
How do you solve $\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin x}}$?
Answer
494.1k+ views
Hint: Here, in the given question, we need to prove that $\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin x}}$. We will first multiply and divide LHS by $\sin x$. As we can see that in the right-hand side, the numerator value is in the terms of $1 + \cos x$, so we will try to convert $\sin e$ function into $\cos ine$ using identities. After that we will take out the common terms and cancel out the common terms to get our required answer.
Formulae used:
I.${\sin ^2}x = 1 - {\cos ^2}x$
II.${\tan ^2}x = {\sec ^2}x - 1$
III.$\cos e{c^2}x = 1 + {\cot ^2}x$
Complete step-by-step answer:
We have to prove that, $\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin x}}$
L.H.S, $\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}}$
Multiply and divide by $\sin x$
$ \Rightarrow \dfrac{{\sin x}}{{\sin x}} \times \dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}}$
On multiplication of $\sin x$ with numerator, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin x.\sin x + \sin x.\cos x}}{{1 + \sin x - \cos x}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin {x^2} + \sin x.\cos x}}{{1 + \sin x - \cos x}}} \right]$
As we know, ${\sin ^2}x = 1 - {\cos ^2}x$. Therefore, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin x.\cos x + {1^2} - {{\cos }^2}x}}{{1 + \sin x - \cos x}}} \right]$
On taking $\sin x$ as a common factor and expanding ${1^2} - {\cos ^2}x$, using ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x\left( {1 + \cos x} \right) + \left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}{{1 + \sin x - \cos x}}} \right]$
Now, we will take $\left( {1 + \cos x} \right)$ as a common term
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\left( {1 + \cos x} \right)\left( {\sin x + 1 - \cos x} \right)}}{{1 + \sin x - \cos x}}} \right]$
On canceling out the common terms, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\left( {1 + \cos x} \right)}}{1}} \right]$
This can also be written as,
$ \Rightarrow \dfrac{{1 + \cos x}}{{\sin x}}$ = RHS
Hence proved, LHS = RHS.
Note: In mathematics, the sine is a trigonometric function of an angle. The sine of an acute angle is defined in the context of a right triangle: for the specified angle, it is the ratio of the length of the side that is opposite that angle, to the length of the longest side of the triangle. Whereas cos is the ratio of the adjacent side to the hypotenuse of a right triangle.
Formulae used:
I.${\sin ^2}x = 1 - {\cos ^2}x$
II.${\tan ^2}x = {\sec ^2}x - 1$
III.$\cos e{c^2}x = 1 + {\cot ^2}x$
Complete step-by-step answer:
We have to prove that, $\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin x}}$
L.H.S, $\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}}$
Multiply and divide by $\sin x$
$ \Rightarrow \dfrac{{\sin x}}{{\sin x}} \times \dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}}$
On multiplication of $\sin x$ with numerator, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin x.\sin x + \sin x.\cos x}}{{1 + \sin x - \cos x}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin {x^2} + \sin x.\cos x}}{{1 + \sin x - \cos x}}} \right]$
As we know, ${\sin ^2}x = 1 - {\cos ^2}x$. Therefore, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin x.\cos x + {1^2} - {{\cos }^2}x}}{{1 + \sin x - \cos x}}} \right]$
On taking $\sin x$ as a common factor and expanding ${1^2} - {\cos ^2}x$, using ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x\left( {1 + \cos x} \right) + \left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}{{1 + \sin x - \cos x}}} \right]$
Now, we will take $\left( {1 + \cos x} \right)$ as a common term
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\left( {1 + \cos x} \right)\left( {\sin x + 1 - \cos x} \right)}}{{1 + \sin x - \cos x}}} \right]$
On canceling out the common terms, we get
$ \Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\left( {1 + \cos x} \right)}}{1}} \right]$
This can also be written as,
$ \Rightarrow \dfrac{{1 + \cos x}}{{\sin x}}$ = RHS
Hence proved, LHS = RHS.
Note: In mathematics, the sine is a trigonometric function of an angle. The sine of an acute angle is defined in the context of a right triangle: for the specified angle, it is the ratio of the length of the side that is opposite that angle, to the length of the longest side of the triangle. Whereas cos is the ratio of the adjacent side to the hypotenuse of a right triangle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

