
How do you solve $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$ over the interval $0$ to $2\pi$?
Answer
545.4k+ views
Hint: First, find the values of $t$ satisfying $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties. Next, find all values of $t$ in the interval $\left[ {0,2\pi } \right]$. Then, we will get all solutions of the given equation in the given interval.
Formula used:
1. $\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}$
2. $\cos \left( {\pi - x} \right) = - \cos x$
3. $\cos \left( {\pi + x} \right) = - \cos x$
Complete step by step solution:
Given equation: $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$
We have to find all possible values of $t$ satisfying a given equation over the interval $0$ to $2\pi$.
First, we will find the values of $t$ satisfying $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$…(i)
So, using the property $\cos \left( {\pi - x} \right) = - \cos x$ and $\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \cos t = - \cos \dfrac{\pi }{6}$
$ \Rightarrow \cos t = \cos \left( {\pi - \dfrac{\pi }{6}} \right)$
$ \Rightarrow t = \dfrac{{5\pi }}{6}$
Now, using the property $\cos \left( {\pi + x} \right) = - \cos x$ and $\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \cos t = - \cos \dfrac{\pi }{6}$
$ \Rightarrow \cos t = \cos \left( {\pi + \dfrac{\pi }{6}} \right)$
$ \Rightarrow t = \dfrac{{7\pi }}{6}$
Since, the period of the $\cos t$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$t = \dfrac{{5\pi }}{6} + 2n\pi ,\dfrac{{7\pi }}{6} + 2n\pi $, for any integer $n$.
Now, find the values of $n$ that produce a value within the interval $\left[ {0,2\pi } \right]$.
i.e., find all values of $t$ over the interval $0$ to $2\pi$.
Plug in $0$ for $n$ and simplify to see if the solution is contained in $\left[ {0,2\pi } \right]$.
Since, it is given that $t \in \left[ {0,2\pi } \right]$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $t = \dfrac{{5\pi }}{6} + 2n\pi ,\dfrac{{7\pi }}{6} + 2n\pi $, we get
$t = \dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6}$
Thus, $t = \dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6}$ or $t = {150^ \circ },{210^ \circ }$.
Hence, $t = \dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6}$ or $t = {150^ \circ },{210^ \circ }$ are solutions of the given equation over the interval $0$ to $2\pi.$
Note: In above question, we can find the solutions of given equation by plotting the equation, $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$ on graph paper and determine all solutions which lie in the interval, $\left[ {0,2\pi } \right]$.
Formula used:
1. $\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}$
2. $\cos \left( {\pi - x} \right) = - \cos x$
3. $\cos \left( {\pi + x} \right) = - \cos x$
Complete step by step solution:
Given equation: $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$
We have to find all possible values of $t$ satisfying a given equation over the interval $0$ to $2\pi$.
First, we will find the values of $t$ satisfying $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$…(i)
So, using the property $\cos \left( {\pi - x} \right) = - \cos x$ and $\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \cos t = - \cos \dfrac{\pi }{6}$
$ \Rightarrow \cos t = \cos \left( {\pi - \dfrac{\pi }{6}} \right)$
$ \Rightarrow t = \dfrac{{5\pi }}{6}$
Now, using the property $\cos \left( {\pi + x} \right) = - \cos x$ and $\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \cos t = - \cos \dfrac{\pi }{6}$
$ \Rightarrow \cos t = \cos \left( {\pi + \dfrac{\pi }{6}} \right)$
$ \Rightarrow t = \dfrac{{7\pi }}{6}$
Since, the period of the $\cos t$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$t = \dfrac{{5\pi }}{6} + 2n\pi ,\dfrac{{7\pi }}{6} + 2n\pi $, for any integer $n$.
Now, find the values of $n$ that produce a value within the interval $\left[ {0,2\pi } \right]$.
i.e., find all values of $t$ over the interval $0$ to $2\pi$.
Plug in $0$ for $n$ and simplify to see if the solution is contained in $\left[ {0,2\pi } \right]$.
Since, it is given that $t \in \left[ {0,2\pi } \right]$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $t = \dfrac{{5\pi }}{6} + 2n\pi ,\dfrac{{7\pi }}{6} + 2n\pi $, we get
$t = \dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6}$
Thus, $t = \dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6}$ or $t = {150^ \circ },{210^ \circ }$.
Hence, $t = \dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6}$ or $t = {150^ \circ },{210^ \circ }$ are solutions of the given equation over the interval $0$ to $2\pi.$
Note: In above question, we can find the solutions of given equation by plotting the equation, $\cos \left( t \right) = - \dfrac{{\sqrt 3 }}{2}$ on graph paper and determine all solutions which lie in the interval, $\left[ {0,2\pi } \right]$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

