Answer
Verified
447.9k+ views
Hint: To solve the question given above, we will first assume that the value of $\left( \sqrt{288}-\sqrt{119} \right)$ is x and the value of $\left( \sqrt{288}+\sqrt{119} \right)$ be y. Then we will calculate the value of ${{x}^{3}}$ and ${{y}^{3}}$and then we will take the square root of the product to obtain the answer.
Complete step-by-step solution
Before solving the question given above, we will assume that the expression ${{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}$ has value equal to P. Thus, we have the following equation:
$P={{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}.....\left( 1 \right)$
Now, we will assume that the value of $\left( \sqrt{288}-\sqrt{119} \right)$ be x. Thus we have the following equation:
$x=\sqrt{288}-\sqrt{119}......\left( 2 \right)$
Now, we will cube both sides of the equation. After doing this we will get following equation:
${{x}^{3}}={{\left( \sqrt{288}-\sqrt{119} \right)}^{3}}$
In the above equation, we are going to use an identity which is shown below:
${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}$
Thus, we will get:
${{x}^{3}}={{\left( \sqrt{288} \right)}^{3}}-{{\left( \sqrt{119} \right)}^{3}}-3{{\left( \sqrt{288} \right)}^{2}}\left( \sqrt{119} \right)+3\left( \sqrt{288} \right){{\left( \sqrt{119} \right)}^{2}}$
$\Rightarrow {{x}^{3}}={{\left( \sqrt{288} \right)}^{3}}-{{\left( \sqrt{119} \right)}^{3}}-\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right]+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]$
Now, we will rearrange the above equation and we will get:
\[\begin{align}
& \Rightarrow {{x}^{3}}={{\left( \sqrt{288} \right)}^{3}}+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]-{{\left( \sqrt{119} \right)}^{3}}-\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right] \\
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( {{\left( \sqrt{288} \right)}^{2}}+\left[ 3\left( 119 \right) \right] \right)-\sqrt{119}\left( {{\left( \sqrt{119} \right)}^{2}}+\left[ 3\left( 288 \right) \right] \right) \\
\end{align}\]
Now, we will square the terms which has the power 2 and therefore we will get:
\[\begin{align}
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)-\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)-\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( 645 \right)-\sqrt{119}\left( 983 \right)\text{ }.........\left( 3 \right) \\
\end{align}\]
Now, let us assume that the value of $\left( \sqrt{288}+\sqrt{119} \right)$ be y. Thus we have:
$y=\sqrt{288}+\sqrt{119}$
On cubing both sides we get:
${{y}^{3}}={{\left( \sqrt{288}+\sqrt{119} \right)}^{3}}$
Now, we will use another identity in above equation which is shown below:
${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$
Thus, we will get:
${{y}^{3}}={{\left( \sqrt{288} \right)}^{3}}+{{\left( \sqrt{119} \right)}^{3}}+3{{\left( \sqrt{288} \right)}^{2}}\left( \sqrt{119} \right)+3\left( \sqrt{288} \right){{\left( \sqrt{119} \right)}^{2}}$
$\Rightarrow {{y}^{3}}={{\left( \sqrt{288} \right)}^{3}}+{{\left( \sqrt{119} \right)}^{3}}+\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right]+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]$
Now, we will rearrange the above equation and we will get:
\[\begin{align}
& \Rightarrow {{y}^{3}}={{\left( \sqrt{288} \right)}^{3}}+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]+{{\left( \sqrt{119} \right)}^{3}}+\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right] \\
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( {{\left( \sqrt{288} \right)}^{2}}+\left[ 3\left( 119 \right) \right] \right)+\sqrt{119}\left( {{\left( \sqrt{119} \right)}^{2}}+\left[ 3\left( 288 \right) \right] \right) \\
\end{align}\]
Now, we will square the terms which has the power 2 and therefore we will get:
\[\begin{align}
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)+\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)+\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( 645 \right)+\sqrt{119}\left( 983 \right)\text{ }.........\left( 4 \right) \\
\end{align}\]
Now, we will multiply the equation $\left( 3 \right)$ and $\left( 4 \right)$. After doing this, we will get:
${{x}^{3}}{{y}^{3}}=\left( \sqrt{288}\left( 645 \right)-\sqrt{119}\left( 983 \right) \right)\left( \sqrt{288}\left( 645 \right)+\sqrt{119}\left( 983 \right) \right)$
Here, we will use the identity on the RHS: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
$\begin{align}
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( \sqrt{288}\left( 645 \right) \right)}^{2}}-{{\left( \sqrt{119}\left( 983 \right) \right)}^{2}} \\
& \Rightarrow {{x}^{3}}{{y}^{3}}=288{{\left( 645 \right)}^{2}}-119{{\left( 983 \right)}^{2}} \\
\end{align}$
Now. we will expand 645 and 983
$\Rightarrow {{x}^{3}}{{y}^{3}}=288{{\left( 288+\left( 3\times 119 \right) \right)}^{2}}-119{{\left( 119+\left( 3\times 288 \right) \right)}^{2}}$
Now, we will apply the identity that is ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ :
\[\Rightarrow {{x}^{3}}{{y}^{3}}=288\left( {{\left( 288 \right)}^{2}}+{{\left( 3\times 119 \right)}^{2}}+2\left( 288 \right)\left( 3\times 119 \right) \right)-119\left( {{\left( 119 \right)}^{2}}+{{\left( 3\times 288 \right)}^{2}}+2\left( 3\times 288 \right)\left( 119 \right) \right)\]
Now, we will multiply 288 and 119 into the brackets:
\[\begin{align}
& \Rightarrow {{x}^{3}}{{y}^{3}}=\left( {{\left( 288 \right)}^{3}}+288{{\left( 3\times 119 \right)}^{2}}+2{{\left( 288 \right)}^{2}}\left( 3\times 119 \right) \right)-\left( {{\left( 119 \right)}^{3}}+119{{\left( 3\times 288 \right)}^{2}}+2\left( 3\times 288 \right){{\left( 119 \right)}^{2}} \right) \\
& \Rightarrow {{x}^{3}}{{y}^{3}}=\left( {{\left( 288 \right)}^{3}}+9\times 288\times {{\left( 119 \right)}^{2}}+6{{\left( 288 \right)}^{2}}119 \right)-\left( {{\left( 119 \right)}^{3}}+119\times 9\times {{\left( 288 \right)}^{2}}+6\times 288{{\left( 119 \right)}^{2}} \right) \\
\end{align}\]
Now, we will arrange the above terms:
\[\begin{align}
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288 \right)}^{3}}-{{\left( 119 \right)}^{3}}+9\times 288\times {{\left( 119 \right)}^{2}}-6\times 288{{\left( 119 \right)}^{2}}+6{{\left( 288 \right)}^{2}}119-119\times 9\times {{\left( 288 \right)}^{2}} \\
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288 \right)}^{3}}-{{\left( 119 \right)}^{3}}+288{{\left( 119 \right)}^{2}}\left( 9-6 \right)+{{\left( 288 \right)}^{2}}119\left( 6-9 \right) \\
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288 \right)}^{3}}-{{\left( 119 \right)}^{3}}+3{{\left( 119 \right)}^{2}}288-3{{\left( 288 \right)}^{2}}119 \\
\end{align}\]
Now, we know that: ${{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}={{\left( a-b \right)}^{3}}$
Therefore: $\Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288-119 \right)}^{3}}\Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 169 \right)}^{3}}\text{ }.......\text{ Equation 5}$
Now, we know that
$P={{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{x}^{\dfrac{3}{2}}}{{y}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}{{\left( {{y}^{3}} \right)}^{\dfrac{1}{2}}}$
Now, we will use another identity: ${{a}^{x}}\times {{b}^{x}}={{\left( ab \right)}^{x}}$
Thus, we will get:
$\Rightarrow P={{\left( {{x}^{3}}{{y}^{3}} \right)}^{\dfrac{1}{2}}}$
$\Rightarrow P={{\left( {{169}^{3}} \right)}^{\dfrac{1}{2}}}$ (from equation 5)
$\Rightarrow P={{\left[ {{\left( 13\times 13 \right)}^{3}} \right]}^{\dfrac{1}{2}}}$
$\Rightarrow P={{\left( 13\times 13 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( 13 \right)}^{3}}=13\times 13\times 13$
$\Rightarrow P=2197$
Thus, value of ${{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}=2197$
Note: The above question can also be solved alternatively as shown below:
$P={{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}$
Here, we will use identity: ${{a}^{x}}\times {{b}^{x}}={{\left( ab \right)}^{x}}$
$\Rightarrow P={{\left[ \left( \sqrt{288}-\sqrt{119} \right)\left( \sqrt{288}+\sqrt{119} \right) \right]}^{\dfrac{3}{2}}}$
Now, we will use identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
$\Rightarrow P={{\left( 288-119 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( 169 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( 13\times 13 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{13}^{3}}$
$\Rightarrow P=2197$
Complete step-by-step solution
Before solving the question given above, we will assume that the expression ${{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}$ has value equal to P. Thus, we have the following equation:
$P={{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}.....\left( 1 \right)$
Now, we will assume that the value of $\left( \sqrt{288}-\sqrt{119} \right)$ be x. Thus we have the following equation:
$x=\sqrt{288}-\sqrt{119}......\left( 2 \right)$
Now, we will cube both sides of the equation. After doing this we will get following equation:
${{x}^{3}}={{\left( \sqrt{288}-\sqrt{119} \right)}^{3}}$
In the above equation, we are going to use an identity which is shown below:
${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}$
Thus, we will get:
${{x}^{3}}={{\left( \sqrt{288} \right)}^{3}}-{{\left( \sqrt{119} \right)}^{3}}-3{{\left( \sqrt{288} \right)}^{2}}\left( \sqrt{119} \right)+3\left( \sqrt{288} \right){{\left( \sqrt{119} \right)}^{2}}$
$\Rightarrow {{x}^{3}}={{\left( \sqrt{288} \right)}^{3}}-{{\left( \sqrt{119} \right)}^{3}}-\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right]+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]$
Now, we will rearrange the above equation and we will get:
\[\begin{align}
& \Rightarrow {{x}^{3}}={{\left( \sqrt{288} \right)}^{3}}+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]-{{\left( \sqrt{119} \right)}^{3}}-\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right] \\
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( {{\left( \sqrt{288} \right)}^{2}}+\left[ 3\left( 119 \right) \right] \right)-\sqrt{119}\left( {{\left( \sqrt{119} \right)}^{2}}+\left[ 3\left( 288 \right) \right] \right) \\
\end{align}\]
Now, we will square the terms which has the power 2 and therefore we will get:
\[\begin{align}
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)-\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)-\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{x}^{3}}=\sqrt{288}\left( 645 \right)-\sqrt{119}\left( 983 \right)\text{ }.........\left( 3 \right) \\
\end{align}\]
Now, let us assume that the value of $\left( \sqrt{288}+\sqrt{119} \right)$ be y. Thus we have:
$y=\sqrt{288}+\sqrt{119}$
On cubing both sides we get:
${{y}^{3}}={{\left( \sqrt{288}+\sqrt{119} \right)}^{3}}$
Now, we will use another identity in above equation which is shown below:
${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$
Thus, we will get:
${{y}^{3}}={{\left( \sqrt{288} \right)}^{3}}+{{\left( \sqrt{119} \right)}^{3}}+3{{\left( \sqrt{288} \right)}^{2}}\left( \sqrt{119} \right)+3\left( \sqrt{288} \right){{\left( \sqrt{119} \right)}^{2}}$
$\Rightarrow {{y}^{3}}={{\left( \sqrt{288} \right)}^{3}}+{{\left( \sqrt{119} \right)}^{3}}+\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right]+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]$
Now, we will rearrange the above equation and we will get:
\[\begin{align}
& \Rightarrow {{y}^{3}}={{\left( \sqrt{288} \right)}^{3}}+\left[ 3\left( \sqrt{288} \right)\left( 119 \right) \right]+{{\left( \sqrt{119} \right)}^{3}}+\left[ 3\left( 288 \right)\left( \sqrt{119} \right) \right] \\
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( {{\left( \sqrt{288} \right)}^{2}}+\left[ 3\left( 119 \right) \right] \right)+\sqrt{119}\left( {{\left( \sqrt{119} \right)}^{2}}+\left[ 3\left( 288 \right) \right] \right) \\
\end{align}\]
Now, we will square the terms which has the power 2 and therefore we will get:
\[\begin{align}
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)+\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( 288+\left[ 3\left( 119 \right) \right] \right)+\sqrt{119}\left( 119+\left[ 3\left( 288 \right) \right] \right) \\
& \Rightarrow {{y}^{3}}=\sqrt{288}\left( 645 \right)+\sqrt{119}\left( 983 \right)\text{ }.........\left( 4 \right) \\
\end{align}\]
Now, we will multiply the equation $\left( 3 \right)$ and $\left( 4 \right)$. After doing this, we will get:
${{x}^{3}}{{y}^{3}}=\left( \sqrt{288}\left( 645 \right)-\sqrt{119}\left( 983 \right) \right)\left( \sqrt{288}\left( 645 \right)+\sqrt{119}\left( 983 \right) \right)$
Here, we will use the identity on the RHS: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
$\begin{align}
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( \sqrt{288}\left( 645 \right) \right)}^{2}}-{{\left( \sqrt{119}\left( 983 \right) \right)}^{2}} \\
& \Rightarrow {{x}^{3}}{{y}^{3}}=288{{\left( 645 \right)}^{2}}-119{{\left( 983 \right)}^{2}} \\
\end{align}$
Now. we will expand 645 and 983
$\Rightarrow {{x}^{3}}{{y}^{3}}=288{{\left( 288+\left( 3\times 119 \right) \right)}^{2}}-119{{\left( 119+\left( 3\times 288 \right) \right)}^{2}}$
Now, we will apply the identity that is ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ :
\[\Rightarrow {{x}^{3}}{{y}^{3}}=288\left( {{\left( 288 \right)}^{2}}+{{\left( 3\times 119 \right)}^{2}}+2\left( 288 \right)\left( 3\times 119 \right) \right)-119\left( {{\left( 119 \right)}^{2}}+{{\left( 3\times 288 \right)}^{2}}+2\left( 3\times 288 \right)\left( 119 \right) \right)\]
Now, we will multiply 288 and 119 into the brackets:
\[\begin{align}
& \Rightarrow {{x}^{3}}{{y}^{3}}=\left( {{\left( 288 \right)}^{3}}+288{{\left( 3\times 119 \right)}^{2}}+2{{\left( 288 \right)}^{2}}\left( 3\times 119 \right) \right)-\left( {{\left( 119 \right)}^{3}}+119{{\left( 3\times 288 \right)}^{2}}+2\left( 3\times 288 \right){{\left( 119 \right)}^{2}} \right) \\
& \Rightarrow {{x}^{3}}{{y}^{3}}=\left( {{\left( 288 \right)}^{3}}+9\times 288\times {{\left( 119 \right)}^{2}}+6{{\left( 288 \right)}^{2}}119 \right)-\left( {{\left( 119 \right)}^{3}}+119\times 9\times {{\left( 288 \right)}^{2}}+6\times 288{{\left( 119 \right)}^{2}} \right) \\
\end{align}\]
Now, we will arrange the above terms:
\[\begin{align}
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288 \right)}^{3}}-{{\left( 119 \right)}^{3}}+9\times 288\times {{\left( 119 \right)}^{2}}-6\times 288{{\left( 119 \right)}^{2}}+6{{\left( 288 \right)}^{2}}119-119\times 9\times {{\left( 288 \right)}^{2}} \\
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288 \right)}^{3}}-{{\left( 119 \right)}^{3}}+288{{\left( 119 \right)}^{2}}\left( 9-6 \right)+{{\left( 288 \right)}^{2}}119\left( 6-9 \right) \\
& \Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288 \right)}^{3}}-{{\left( 119 \right)}^{3}}+3{{\left( 119 \right)}^{2}}288-3{{\left( 288 \right)}^{2}}119 \\
\end{align}\]
Now, we know that: ${{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}={{\left( a-b \right)}^{3}}$
Therefore: $\Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 288-119 \right)}^{3}}\Rightarrow {{x}^{3}}{{y}^{3}}={{\left( 169 \right)}^{3}}\text{ }.......\text{ Equation 5}$
Now, we know that
$P={{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{x}^{\dfrac{3}{2}}}{{y}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( {{x}^{3}} \right)}^{\dfrac{1}{2}}}{{\left( {{y}^{3}} \right)}^{\dfrac{1}{2}}}$
Now, we will use another identity: ${{a}^{x}}\times {{b}^{x}}={{\left( ab \right)}^{x}}$
Thus, we will get:
$\Rightarrow P={{\left( {{x}^{3}}{{y}^{3}} \right)}^{\dfrac{1}{2}}}$
$\Rightarrow P={{\left( {{169}^{3}} \right)}^{\dfrac{1}{2}}}$ (from equation 5)
$\Rightarrow P={{\left[ {{\left( 13\times 13 \right)}^{3}} \right]}^{\dfrac{1}{2}}}$
$\Rightarrow P={{\left( 13\times 13 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( 13 \right)}^{3}}=13\times 13\times 13$
$\Rightarrow P=2197$
Thus, value of ${{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}=2197$
Note: The above question can also be solved alternatively as shown below:
$P={{\left( \sqrt{288}-\sqrt{119} \right)}^{\dfrac{3}{2}}}{{\left( \sqrt{288}+\sqrt{119} \right)}^{\dfrac{3}{2}}}$
Here, we will use identity: ${{a}^{x}}\times {{b}^{x}}={{\left( ab \right)}^{x}}$
$\Rightarrow P={{\left[ \left( \sqrt{288}-\sqrt{119} \right)\left( \sqrt{288}+\sqrt{119} \right) \right]}^{\dfrac{3}{2}}}$
Now, we will use identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
$\Rightarrow P={{\left( 288-119 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( 169 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{\left( 13\times 13 \right)}^{\dfrac{3}{2}}}$
$\Rightarrow P={{13}^{3}}$
$\Rightarrow P=2197$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE