
Solve and find the value of: $\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}}$
Answer
495.3k+ views
Hint: The given question deals with basic simplification of trigonometric functions by using many simple trigonometric formulae such as $\sin (\pi + x) = - \sin x$ and $\cos (\pi + x) = - \cos x$ . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem. We first convert all the trigonometric ratios into sine and cosine y=using some basic trigonometric formulae and identity and then simplify the expression.
Complete step by step answer:
In the given problem, we have to find the value of $\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}}$ .
So, $\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{200}^ \circ }}}{{\cot {{200}^ \circ }}}}} \\ $
Using $\cos ec(x) = \dfrac{1}{{\sin (x)}}$ and $\sec x = \dfrac{1}{{\cos x}}$, we get,
$\Rightarrow \dfrac{{\dfrac{{2\sin {{140}^ \circ }\cos {{220}^ \circ }}}{{\cos {{280}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{340}^ \circ }}}}}{{1 - \dfrac{{\tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}} \\ $
Using $\cot x = \dfrac{{\cos x}}{{\sin x}}$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$, we get,
$\Rightarrow \dfrac{{\dfrac{{2\sin {{140}^ \circ }\cos {{220}^ \circ }}}{{\cos {{280}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{340}^ \circ }}}}}{{1 - \dfrac{{\left( {\dfrac{{\sin {{280}^ \circ }}}{{\cos {{280}^ \circ }}}} \right)}}{{\left( {\dfrac{{\cos {{200}^ \circ }}}{{\sin {{200}^ \circ }}}} \right)}}}}$
Using the trigonometric formulae $\cos \left( {2\pi - \theta } \right) = \cos \theta $ and $\sin \left( {\pi - \theta } \right) = \sin \theta $, we get,
$\dfrac{{\dfrac{{2\sin {{40}^ \circ }\cos {{140}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{1 - \left( {\dfrac{{\sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}$
Now, using the trigonometric identities $\cos \left( {\pi - \theta } \right) = - \cos \theta $ and $\sin 2x = 2\sin x\cos x$, we get,
$\dfrac{{\dfrac{{ - 2\sin {{40}^ \circ }\cos {{40}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}} \\ $
$\Rightarrow \dfrac{{\dfrac{{ - \sin {{80}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}$
Now, using the compound angle formulae of sine and cosine $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$. So, we get,
$\Rightarrow \dfrac{{\dfrac{{ - \sin {{80}^ \circ }\cos {{20}^ \circ } + \cos {{80}^ \circ }\sin {{20}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}$
Rearranging the terms,
$\dfrac{{\dfrac{{\cos {{80}^ \circ }\sin {{20}^ \circ } - \sin {{80}^ \circ }\cos {{20}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}} \\ $
$\Rightarrow \dfrac{{\dfrac{{\sin {{60}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\dfrac{{\cos {{480}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}}}$
$ \dfrac{{\sin {{60}^ \circ }\cos {{200}^ \circ }\cos {{280}^ \circ }}}{{\cos {{480}^ \circ }\cos {{80}^ \circ }\cos {{20}^ \circ }}}$
Now, we use trigonometric formulae $\cos \left( {\pi + \theta } \right) = - \cos \theta $ and $\cos \left( {2\pi + \theta } \right) = \cos \theta $,
$\Rightarrow \dfrac{{ - \sin {{60}^ \circ }\cos {{20}^ \circ }\cos {{80}^ \circ }}}{{\cos {{120}^ \circ }\cos {{80}^ \circ }\cos {{20}^ \circ }}} \\ $
Cancelling the common factors in numerator and denominator, we get,
$\dfrac{{ - \sin {{60}^ \circ }}}{{\cos {{120}^ \circ }}}$
Now, we know that $\cos \left( {\pi - \theta } \right) = - \cos \theta $
$\dfrac{{ - \sin {{60}^ \circ }}}{{ - \cos {{60}^ \circ }}}=\tan {60^ \circ }$
Now, we know the value of $\tan {60^ \circ }$. So, we get,
$\therefore \sqrt 3 $
So, the value of $\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}}$ is $\sqrt 3 $.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: $\tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}}$ and $\cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}}$ . Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. However, questions involving this type of simplification of trigonometric ratios may also have multiple interconvertible answers. We must remember the values for trigonometric expression of some standard angles such as \[{60^ \circ }\], ${120^ \circ }$, etc. We must take care of calculations while solving such questions.
Complete step by step answer:
In the given problem, we have to find the value of $\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}}$ .
So, $\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{200}^ \circ }}}{{\cot {{200}^ \circ }}}}} \\ $
Using $\cos ec(x) = \dfrac{1}{{\sin (x)}}$ and $\sec x = \dfrac{1}{{\cos x}}$, we get,
$\Rightarrow \dfrac{{\dfrac{{2\sin {{140}^ \circ }\cos {{220}^ \circ }}}{{\cos {{280}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{340}^ \circ }}}}}{{1 - \dfrac{{\tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}} \\ $
Using $\cot x = \dfrac{{\cos x}}{{\sin x}}$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$, we get,
$\Rightarrow \dfrac{{\dfrac{{2\sin {{140}^ \circ }\cos {{220}^ \circ }}}{{\cos {{280}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{340}^ \circ }}}}}{{1 - \dfrac{{\left( {\dfrac{{\sin {{280}^ \circ }}}{{\cos {{280}^ \circ }}}} \right)}}{{\left( {\dfrac{{\cos {{200}^ \circ }}}{{\sin {{200}^ \circ }}}} \right)}}}}$
Using the trigonometric formulae $\cos \left( {2\pi - \theta } \right) = \cos \theta $ and $\sin \left( {\pi - \theta } \right) = \sin \theta $, we get,
$\dfrac{{\dfrac{{2\sin {{40}^ \circ }\cos {{140}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{1 - \left( {\dfrac{{\sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}$
Now, using the trigonometric identities $\cos \left( {\pi - \theta } \right) = - \cos \theta $ and $\sin 2x = 2\sin x\cos x$, we get,
$\dfrac{{\dfrac{{ - 2\sin {{40}^ \circ }\cos {{40}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}} \\ $
$\Rightarrow \dfrac{{\dfrac{{ - \sin {{80}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}$
Now, using the compound angle formulae of sine and cosine $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$. So, we get,
$\Rightarrow \dfrac{{\dfrac{{ - \sin {{80}^ \circ }\cos {{20}^ \circ } + \cos {{80}^ \circ }\sin {{20}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}$
Rearranging the terms,
$\dfrac{{\dfrac{{\cos {{80}^ \circ }\sin {{20}^ \circ } - \sin {{80}^ \circ }\cos {{20}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}} \\ $
$\Rightarrow \dfrac{{\dfrac{{\sin {{60}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\dfrac{{\cos {{480}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}}}$
$ \dfrac{{\sin {{60}^ \circ }\cos {{200}^ \circ }\cos {{280}^ \circ }}}{{\cos {{480}^ \circ }\cos {{80}^ \circ }\cos {{20}^ \circ }}}$
Now, we use trigonometric formulae $\cos \left( {\pi + \theta } \right) = - \cos \theta $ and $\cos \left( {2\pi + \theta } \right) = \cos \theta $,
$\Rightarrow \dfrac{{ - \sin {{60}^ \circ }\cos {{20}^ \circ }\cos {{80}^ \circ }}}{{\cos {{120}^ \circ }\cos {{80}^ \circ }\cos {{20}^ \circ }}} \\ $
Cancelling the common factors in numerator and denominator, we get,
$\dfrac{{ - \sin {{60}^ \circ }}}{{\cos {{120}^ \circ }}}$
Now, we know that $\cos \left( {\pi - \theta } \right) = - \cos \theta $
$\dfrac{{ - \sin {{60}^ \circ }}}{{ - \cos {{60}^ \circ }}}=\tan {60^ \circ }$
Now, we know the value of $\tan {60^ \circ }$. So, we get,
$\therefore \sqrt 3 $
So, the value of $\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}}$ is $\sqrt 3 $.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: $\tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}}$ and $\cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}}$ . Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. However, questions involving this type of simplification of trigonometric ratios may also have multiple interconvertible answers. We must remember the values for trigonometric expression of some standard angles such as \[{60^ \circ }\], ${120^ \circ }$, etc. We must take care of calculations while solving such questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

