
Solve: $ 8x+\dfrac{21}{4}=3x+7 $
A. $ \dfrac{2}{9} $
B. $ \dfrac{7}{20} $
C. $ \dfrac{6}{17} $
D. $ \dfrac{4}{21} $
Answer
566.7k+ views
Hint: If two quantities are equal, then they will still be equal if we add / subtract or multiply / divide both of them by the same quantity.
In order to solve for x, we must keep only the variable on one side of the equality sign and only numbers on the other side.
A quick calculation reveals that the denominator of the answer must be a multiple of 4.
Complete step by step answer:
Given that $ 8x+\dfrac{21}{4}=3x+7 $ .
On multiplying both sides by 4, we get:
⇒ $ 32x+21=12x+28 $
Subtracting $ 12x $ from both sides, we get:
⇒ $ 20x+21=28 $
Subtracting 21 from both sides, give us:
⇒ $ 20x=7 $
And dividing both sides by 20, will give us:
⇒ $ x=\dfrac{7}{20} $
The correct answer is B. $ \dfrac{7}{20} $ .
Note: Some Rules of Equality:
If $ a=b $ , then $ a\pm x>b\pm y $ , $ a{{(x)}^{\pm 1}}=b{{(x)}^{\pm 1}} $ and $ \dfrac{x}{a}=\dfrac{x}{b} $ for all x.
If $ a=b $ and $ x>y $ , then $ a+x>b+y $ , but we cannot say anything definite about $ a-x,b-x $ or $ ax,bx $ .
Some Rules of Inequalities:
If $ a>b $ , then $ a\pm x>b\pm x $ .
If $ a>b $ , then $ a{{(x)}^{\pm 1}}>b{{(x)}^{\pm 1}} $ if x>0 and $a{(x)^{\pm 1}}$ < $b{(x)^{\pm}}$ if $ x<0 $ .
If $ a>b $ , then $ \dfrac{x}{a}$ > $\dfrac{x}{b}$ if a,b>0 OR a,b<0.
If a>b and x>y, then a+x>b+y, but we cannot say anything definite about a-x and b-x or ax and bx.
In order to solve for x, we must keep only the variable on one side of the equality sign and only numbers on the other side.
A quick calculation reveals that the denominator of the answer must be a multiple of 4.
Complete step by step answer:
Given that $ 8x+\dfrac{21}{4}=3x+7 $ .
On multiplying both sides by 4, we get:
⇒ $ 32x+21=12x+28 $
Subtracting $ 12x $ from both sides, we get:
⇒ $ 20x+21=28 $
Subtracting 21 from both sides, give us:
⇒ $ 20x=7 $
And dividing both sides by 20, will give us:
⇒ $ x=\dfrac{7}{20} $
The correct answer is B. $ \dfrac{7}{20} $ .
Note: Some Rules of Equality:
If $ a=b $ , then $ a\pm x>b\pm y $ , $ a{{(x)}^{\pm 1}}=b{{(x)}^{\pm 1}} $ and $ \dfrac{x}{a}=\dfrac{x}{b} $ for all x.
If $ a=b $ and $ x>y $ , then $ a+x>b+y $ , but we cannot say anything definite about $ a-x,b-x $ or $ ax,bx $ .
Some Rules of Inequalities:
If $ a>b $ , then $ a\pm x>b\pm x $ .
If $ a>b $ , then $ a{{(x)}^{\pm 1}}>b{{(x)}^{\pm 1}} $ if x>0 and $a{(x)^{\pm 1}}$ < $b{(x)^{\pm}}$ if $ x<0 $ .
If $ a>b $ , then $ \dfrac{x}{a}$ > $\dfrac{x}{b}$ if a,b>0 OR a,b<0.
If a>b and x>y, then a+x>b+y, but we cannot say anything definite about a-x and b-x or ax and bx.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


