
How do you solve $5x + 3y = - 5\;{\text{and}}\;7x + 5y = - 11$ using matrices?
Answer
549.9k+ views
Hint: First of all write the given equations in matrix form $AX = B$ then find the inverse of the matrix A and multiply it to both sides of the equation and do matrix multiplication. After multiplication you will get something $X = {A^{ - 1}}B$. Find the required solution from that equation.
Inverse of a $2 \times 2$ matrix is given as
${\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]$
Complete step by step solution:
In order to solve the given equations $5x + 3y = - 5\;{\text{and}}\;7x + 5y = - 11$ using matrices, we will first express them in matrix form as
$AX = B$
Where $A,\;X\;{\text{and}}\;B$ the matrices which consist of coefficients of variables, variables and constants respectively.
Therefore they can be written as
$A = \left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right],\;X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\;{\text{and}}\;B = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{ - 11}
\end{array}} \right]$
Writing it in equation form, we will get
$
\Rightarrow AX = B \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{ - 11}
\end{array}} \right] \\
$
Now, finding inverse of the matrix A,
We know that the inverse of a $2 \times 2$ matrix is given as
${\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]$
Therefore inverse of A will be given as follows
$
{\left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right]^{ - 1}} = \dfrac{1}{{5 \times 5 - 3 \times 7}}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] = \dfrac{1}{{25 - 21}}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] \\
\therefore {A^{ - 1}} = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] \\
$
Now multiplying both sides of the equation with inverse of A,
$ \Rightarrow \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{ - 11}
\end{array}} \right]$
Since at the left hand side, we have ${A^{ - 1}} \times A$ which will be equal to ${I_2}$
So performing matrix multiplication at right hand side we will get
$
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
{5 \times ( - 5) + ( - 3) \times ( - 11)} \\
{ - 7 \times ( - 5) + 5 \times ( - 11)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
{ - 25 + 33} \\
{35 - 55}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
8 \\
{ - 20}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \left[ {\begin{array}{*{20}{c}}
{\dfrac{8}{4}} \\
{\dfrac{{ - 20}}{4}}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \left[ {\begin{array}{*{20}{c}}
2 \\
{ - 5}
\end{array}} \right] \\
$
Therefore from above matrix equation, we can write
$x = 2\;{\text{and}}\;y = - 5$
That is the required set of solutions for the given equations.
Note: The term ${I_2}$ stands for the identity matrix of order two. Identity matrices have the same properties as the number $1$ in multiplication, that is if we multiply it with any number the number remains the same and that is why in the above equations we have written $IX = X$. Also solving through matrix is same as we solve an equation $ax = b$ that is by multiplying both sides with multiplicative inverse of $a$ as follows
$ \Rightarrow \dfrac{1}{a}ax = \dfrac{1}{a}b \Rightarrow x = \dfrac{b}{a}$
Inverse of a $2 \times 2$ matrix is given as
${\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]$
Complete step by step solution:
In order to solve the given equations $5x + 3y = - 5\;{\text{and}}\;7x + 5y = - 11$ using matrices, we will first express them in matrix form as
$AX = B$
Where $A,\;X\;{\text{and}}\;B$ the matrices which consist of coefficients of variables, variables and constants respectively.
Therefore they can be written as
$A = \left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right],\;X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\;{\text{and}}\;B = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{ - 11}
\end{array}} \right]$
Writing it in equation form, we will get
$
\Rightarrow AX = B \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{ - 11}
\end{array}} \right] \\
$
Now, finding inverse of the matrix A,
We know that the inverse of a $2 \times 2$ matrix is given as
${\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]$
Therefore inverse of A will be given as follows
$
{\left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right]^{ - 1}} = \dfrac{1}{{5 \times 5 - 3 \times 7}}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] = \dfrac{1}{{25 - 21}}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] \\
\therefore {A^{ - 1}} = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right] \\
$
Now multiplying both sides of the equation with inverse of A,
$ \Rightarrow \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
5&3 \\
7&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
{ - 7}&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 5} \\
{ - 11}
\end{array}} \right]$
Since at the left hand side, we have ${A^{ - 1}} \times A$ which will be equal to ${I_2}$
So performing matrix multiplication at right hand side we will get
$
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
{5 \times ( - 5) + ( - 3) \times ( - 11)} \\
{ - 7 \times ( - 5) + 5 \times ( - 11)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
{ - 25 + 33} \\
{35 - 55}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \dfrac{1}{4}\left[ {\begin{array}{*{20}{c}}
8 \\
{ - 20}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \left[ {\begin{array}{*{20}{c}}
{\dfrac{8}{4}} \\
{\dfrac{{ - 20}}{4}}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]\; = \left[ {\begin{array}{*{20}{c}}
2 \\
{ - 5}
\end{array}} \right] \\
$
Therefore from above matrix equation, we can write
$x = 2\;{\text{and}}\;y = - 5$
That is the required set of solutions for the given equations.
Note: The term ${I_2}$ stands for the identity matrix of order two. Identity matrices have the same properties as the number $1$ in multiplication, that is if we multiply it with any number the number remains the same and that is why in the above equations we have written $IX = X$. Also solving through matrix is same as we solve an equation $ax = b$ that is by multiplying both sides with multiplicative inverse of $a$ as follows
$ \Rightarrow \dfrac{1}{a}ax = \dfrac{1}{a}b \Rightarrow x = \dfrac{b}{a}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

