
How do you solve $4{{x}^{2}}+6x=12$ by completing the square?
Answer
557.1k+ views
Hint: We have been given a quadratic equation of $x$ as $4{{x}^{2}}+6x=12$. We first try to form the square form of the given equation and find its root value from the square. We also use the quadratic formula to solve the value of the x. we have the solution in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for general equation of $a{{x}^{2}}+bx+c=0$. We put the values and find the solution.
Complete step by step answer:
We have been given the equation $4{{x}^{2}}+6x=12$. We need to form the square part in $4{{x}^{2}}+6x-12$ as $4{{x}^{2}}+6x-12=0$.
The square form of subtraction of two numbers be ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.
We have \[4{{x}^{2}}+6x-12={{\left( 2x \right)}^{2}}+2\times 2x\times \dfrac{3}{2}+{{\left( \dfrac{3}{2} \right)}^{2}}-12-{{\left( \dfrac{3}{2} \right)}^{2}}\].
Forming the square, we get \[4{{x}^{2}}+6x-12={{\left( 2x+\dfrac{3}{2} \right)}^{2}}-\left( \dfrac{57}{4} \right)\].
We get \[{{\left( 2x+\dfrac{3}{2} \right)}^{2}}-\left( \dfrac{57}{4} \right)=0\]. Taking solution, we get
$\begin{align}
& {{\left( 2x+\dfrac{3}{2} \right)}^{2}}-{{\left( \dfrac{\sqrt{57}}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( 2x+\dfrac{3}{2} \right)}^{2}}={{\left( \dfrac{\sqrt{57}}{2} \right)}^{2}} \\
& \Rightarrow \left( 2x+\dfrac{3}{2} \right)=\pm \dfrac{\sqrt{57}}{2} \\
& \Rightarrow x=\dfrac{1}{4}\left( -3\pm \sqrt{57} \right) \\
\end{align}$.
Thus, the solution of the equation $4{{x}^{2}}+6x=12$ is $x=\dfrac{-3\pm \sqrt{57}}{4}$.
We find the value of $x$ for which the function $f\left( x \right)=4{{x}^{2}}+6x-12$. We can see $\begin{align}
& f\left( \dfrac{-3+\sqrt{57}}{4} \right) \\
& =4{{\left( \dfrac{-3+\sqrt{57}}{4} \right)}^{2}}+\dfrac{6\left( -3+\sqrt{57} \right)}{4}-12 \\
& =\dfrac{66-6\sqrt{57}}{4}+\dfrac{-18+6\sqrt{57}}{4}-12 \\
& =\dfrac{66-18-48}{4} \\
& =0 \\
\end{align}$
So, the root of the $f\left( x \right)=4{{x}^{2}}+6x-12$ will be the $x=\dfrac{-3\pm \sqrt{57}}{4}$.
Note:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method.
In the given equation we have $4{{x}^{2}}+6x-12-0$. The values of a, b, c is $4,6,-12$ respectively.
We put the values and get x as \[x=\dfrac{-6\pm \sqrt{{{6}^{2}}-4\times \left( -12 \right)\times 4}}{2\times 4}=\dfrac{-6\pm \sqrt{228}}{8}=\dfrac{-3\pm \sqrt{57}}{4}\].
The roots of the equation are irrational numbers.
The discriminant value being non-square, we get the irrational numbers a root value.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{6}^{2}}-4\times \left( -12 \right)\times 4=228$.
This is a non-square value. That’s why the roots are irrational.
Complete step by step answer:
We have been given the equation $4{{x}^{2}}+6x=12$. We need to form the square part in $4{{x}^{2}}+6x-12$ as $4{{x}^{2}}+6x-12=0$.
The square form of subtraction of two numbers be ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.
We have \[4{{x}^{2}}+6x-12={{\left( 2x \right)}^{2}}+2\times 2x\times \dfrac{3}{2}+{{\left( \dfrac{3}{2} \right)}^{2}}-12-{{\left( \dfrac{3}{2} \right)}^{2}}\].
Forming the square, we get \[4{{x}^{2}}+6x-12={{\left( 2x+\dfrac{3}{2} \right)}^{2}}-\left( \dfrac{57}{4} \right)\].
We get \[{{\left( 2x+\dfrac{3}{2} \right)}^{2}}-\left( \dfrac{57}{4} \right)=0\]. Taking solution, we get
$\begin{align}
& {{\left( 2x+\dfrac{3}{2} \right)}^{2}}-{{\left( \dfrac{\sqrt{57}}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( 2x+\dfrac{3}{2} \right)}^{2}}={{\left( \dfrac{\sqrt{57}}{2} \right)}^{2}} \\
& \Rightarrow \left( 2x+\dfrac{3}{2} \right)=\pm \dfrac{\sqrt{57}}{2} \\
& \Rightarrow x=\dfrac{1}{4}\left( -3\pm \sqrt{57} \right) \\
\end{align}$.
Thus, the solution of the equation $4{{x}^{2}}+6x=12$ is $x=\dfrac{-3\pm \sqrt{57}}{4}$.
We find the value of $x$ for which the function $f\left( x \right)=4{{x}^{2}}+6x-12$. We can see $\begin{align}
& f\left( \dfrac{-3+\sqrt{57}}{4} \right) \\
& =4{{\left( \dfrac{-3+\sqrt{57}}{4} \right)}^{2}}+\dfrac{6\left( -3+\sqrt{57} \right)}{4}-12 \\
& =\dfrac{66-6\sqrt{57}}{4}+\dfrac{-18+6\sqrt{57}}{4}-12 \\
& =\dfrac{66-18-48}{4} \\
& =0 \\
\end{align}$
So, the root of the $f\left( x \right)=4{{x}^{2}}+6x-12$ will be the $x=\dfrac{-3\pm \sqrt{57}}{4}$.
Note:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method.
In the given equation we have $4{{x}^{2}}+6x-12-0$. The values of a, b, c is $4,6,-12$ respectively.
We put the values and get x as \[x=\dfrac{-6\pm \sqrt{{{6}^{2}}-4\times \left( -12 \right)\times 4}}{2\times 4}=\dfrac{-6\pm \sqrt{228}}{8}=\dfrac{-3\pm \sqrt{57}}{4}\].
The roots of the equation are irrational numbers.
The discriminant value being non-square, we get the irrational numbers a root value.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{6}^{2}}-4\times \left( -12 \right)\times 4=228$.
This is a non-square value. That’s why the roots are irrational.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

