
Solve $3{x^2} - 6x = 0$
Answer
544.8k+ views
Hint:The given problem requires us to solve an equation. The given equation can be reduced to a simple quadratic equation using a substitution. There are various methods that can be employed to solve a quadratic equation like completing the square method, using quadratic formulas and by splitting the middle term.
Complete step by step answer:
In the given question, we are required to solve the equation $3{x^2} - 6x = 0$ .
Quadratic equations can be solved by various methods like splitting the middle term, using the quadratic formula, factoring the common factor, and completing the square method.
We can solve the given equation by any of the methods.
Consider the equation $3{x^2} - 6x = 0$.
The equation can be factorized easily as x can be taken out common from both the terms in the equation.
So, $3{x^2} - 6x = 0$
Taking x common from both the terms, we get,
$ = x\left( {3x - 6} \right) = 0$
Taking $3$ common from both the terms, we get,
$ = 3x\left( {x - 2} \right) = 0$
Dividing both sides of the equation by $3$,
$ = x\left( {x - 2} \right) = 0$
Now, either $x = 0$ or $\left( {x - 2} \right) = 0$.
Either $x = 0$ or $x = 2$ .
So, the roots of the given equation $3{x^2} - 6x = 0$ are: $x = 0$ and $x = 2$ .
Note: Quadratic equations are the polynomial equations with degree of the variable or unknown as $2$. Quadratic equations can be solved by splitting the middle term, factoring common factors, using the quadratic formula and completing the square method. The given equation can be solved by each and every method listed above.
Complete step by step answer:
In the given question, we are required to solve the equation $3{x^2} - 6x = 0$ .
Quadratic equations can be solved by various methods like splitting the middle term, using the quadratic formula, factoring the common factor, and completing the square method.
We can solve the given equation by any of the methods.
Consider the equation $3{x^2} - 6x = 0$.
The equation can be factorized easily as x can be taken out common from both the terms in the equation.
So, $3{x^2} - 6x = 0$
Taking x common from both the terms, we get,
$ = x\left( {3x - 6} \right) = 0$
Taking $3$ common from both the terms, we get,
$ = 3x\left( {x - 2} \right) = 0$
Dividing both sides of the equation by $3$,
$ = x\left( {x - 2} \right) = 0$
Now, either $x = 0$ or $\left( {x - 2} \right) = 0$.
Either $x = 0$ or $x = 2$ .
So, the roots of the given equation $3{x^2} - 6x = 0$ are: $x = 0$ and $x = 2$ .
Note: Quadratic equations are the polynomial equations with degree of the variable or unknown as $2$. Quadratic equations can be solved by splitting the middle term, factoring common factors, using the quadratic formula and completing the square method. The given equation can be solved by each and every method listed above.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

