
Solve $2{x^2} + x - 6$ by completing the square method.
Answer
526.8k+ views
Hint: In the above question you have to solve the equation by completing the square method. In a square method, you have to make a perfect square by modifying the equation. You have to modify the equation in such a manner that its value remains the make and it can become a square. So let us see how we can solve this problem.
Complete Step by Step Solution:
In the given question we have solved $2{x^2} + x - 6$ by completing the square method.
$=2{x^2} + x - 6$
Applying the completing square method,
On dividing the equation with 6 we get,
$\Rightarrow {x^2} + \dfrac{x}{2} - 3 = 0$
On adding and subtracting $\dfrac{1}{{16}}$ in the equation we get,
$\Rightarrow {x^2} + \dfrac{x}{2} + \dfrac{1}{{16}} - \dfrac{1}{{16}} - 3 = 0$
If we look closely then we have ${x^2} + 2.x.\dfrac{1}{4} + \dfrac{1}{{16}} = 0$ which is equal to ${(x + \dfrac{1}{4})^2}$ , so
$\Rightarrow {(x + \dfrac{1}{4})^2} - \dfrac{{49}}{{16}} = 0$
49 is square of 7 and 16 is square of 4, so we have
$\Rightarrow {(x + \dfrac{1}{4})^2} - {(\dfrac{7}{4})^2} = 0$
On applying the formula of ${a^2} - {b^2}$ on the above equation we get,
$\Rightarrow (x + \dfrac{1}{4} - \dfrac{7}{4})(x + \dfrac{1}{4} + \dfrac{7}{4}) = 0$
On solving the above expression we get,
$\Rightarrow (x - \dfrac{3}{2})(x + 2) = 0$
On equating $x - \dfrac{3}{2}$ and $x + 2$ with 0 we get,
$\Rightarrow x = \dfrac{3}{2}, - 2$
On solving $2{x^2} + x - 6$ with completing the square method we get $x = \dfrac{3}{2}$ and $x = - 2$.
Note:
In the above solution we tried to separate ${x^2}$ from its coefficient, afterwards we made it a complete square. And finally by applying the formula of ${a^2} - {b^2}$ that is $(a + b)(a - b)$ we get two values of x. Also, we used the square formula of ${(a + b)^2}$ that is ${a^2} + 2ab + {b^2}$ to complete the square formula.
Complete Step by Step Solution:
In the given question we have solved $2{x^2} + x - 6$ by completing the square method.
$=2{x^2} + x - 6$
Applying the completing square method,
On dividing the equation with 6 we get,
$\Rightarrow {x^2} + \dfrac{x}{2} - 3 = 0$
On adding and subtracting $\dfrac{1}{{16}}$ in the equation we get,
$\Rightarrow {x^2} + \dfrac{x}{2} + \dfrac{1}{{16}} - \dfrac{1}{{16}} - 3 = 0$
If we look closely then we have ${x^2} + 2.x.\dfrac{1}{4} + \dfrac{1}{{16}} = 0$ which is equal to ${(x + \dfrac{1}{4})^2}$ , so
$\Rightarrow {(x + \dfrac{1}{4})^2} - \dfrac{{49}}{{16}} = 0$
49 is square of 7 and 16 is square of 4, so we have
$\Rightarrow {(x + \dfrac{1}{4})^2} - {(\dfrac{7}{4})^2} = 0$
On applying the formula of ${a^2} - {b^2}$ on the above equation we get,
$\Rightarrow (x + \dfrac{1}{4} - \dfrac{7}{4})(x + \dfrac{1}{4} + \dfrac{7}{4}) = 0$
On solving the above expression we get,
$\Rightarrow (x - \dfrac{3}{2})(x + 2) = 0$
On equating $x - \dfrac{3}{2}$ and $x + 2$ with 0 we get,
$\Rightarrow x = \dfrac{3}{2}, - 2$
On solving $2{x^2} + x - 6$ with completing the square method we get $x = \dfrac{3}{2}$ and $x = - 2$.
Note:
In the above solution we tried to separate ${x^2}$ from its coefficient, afterwards we made it a complete square. And finally by applying the formula of ${a^2} - {b^2}$ that is $(a + b)(a - b)$ we get two values of x. Also, we used the square formula of ${(a + b)^2}$ that is ${a^2} + 2ab + {b^2}$ to complete the square formula.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

