
Solve $2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right) = $
1) $\dfrac{\pi }{2}$
2) $\dfrac{{2\pi }}{3}$
3) $\dfrac{{5\pi }}{3}$
4) None of these
Answer
506.1k+ views
Hint: From the given sum, we can convert the ${\sin ^{ - 1}}$ function into ${\cos ^{ - 1}}$ function by using various required operations. Then, we can replace the ${\cos ^{ - 1}}$ function in the given equation. Then by using the property of ${\cos ^{ - 1}}$ function, that is,
${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left[ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right]$
We can find the required value of the given equation.
Complete step-by-step answer:
Given, $2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right)$
Let \[2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) = A\]
Dividing both sides by $2$, we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) = \dfrac{A}{2}$
Taking sine function on both sides, we get,
$ \Rightarrow \dfrac{3}{5} = \sin \left( {\dfrac{A}{2}} \right)$
Now, changing the sides, we get,
$ \Rightarrow \sin \left( {\dfrac{A}{2}} \right) = \dfrac{3}{5}$
Now, using the identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$, we get,
${\sin ^2}\left( {\dfrac{A}{2}} \right) + {\cos ^2}\left( {\dfrac{A}{2}} \right) = 1$
Taking, ${\sin ^2}\left( {\dfrac{A}{2}} \right)$ on right hand side, we get,
$ \Rightarrow {\cos ^2}\left( {\dfrac{A}{2}} \right) = 1 - {\sin ^2}\left( {\dfrac{A}{2}} \right)$
Taking square root on both sides, gives us,
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {1 - {{\sin }^2}\left( {\dfrac{A}{2}} \right)} $
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}} $
Since, we got, $\sin \left( {\dfrac{A}{2}} \right) = \dfrac{3}{5}$
Taking square root on both sides of the equation, we got,
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {1 - \dfrac{9}{{25}}} $
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{16}}{{25}}} $
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \dfrac{4}{5}$
Now, replacing the value of $\cos \left( {\dfrac{A}{2}} \right)$ in the trigonometric property of cosine function, $\cos \theta = 2{\cos ^2}\left( {\dfrac{\theta }{2}} \right) - 1$, we get,
$\cos A = 2{\cos ^2}\left( {\dfrac{A}{2}} \right) - 1$
$ \Rightarrow \cos A = 2{\left( {\dfrac{4}{5}} \right)^2} - 1$
Now, simplifying, we get,
$ \Rightarrow \cos A = 2.\dfrac{{16}}{{25}} - 1$
$ \Rightarrow \cos A = \dfrac{{32}}{{25}} - 1$
$ \Rightarrow \cos A = \dfrac{7}{{25}}$
Taking inverse cosine function on both sides of the equation, we get,
$ \Rightarrow A = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right)$
Now, the given equation is,
$2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right)$
Replacing, $2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) = A = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right)$ in the given equation, we get,
$ = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right)$
Now, using the property of inverse cosine function, ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left[ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right]$, we get,
$ = {\cos ^{ - 1}}\left[ {\left( {\dfrac{7}{{25}}} \right)\left( {\dfrac{{24}}{{25}}} \right) - \sqrt {1 - {{\left( {\dfrac{7}{{25}}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{24}}{{25}}} \right)}^2}} } \right]$
Now, on simplifying, we get,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \sqrt {1 - \dfrac{{49}}{{625}}} \sqrt {1 - \dfrac{{576}}{{625}}} } \right]$
Taking LCM, we get,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \sqrt {\dfrac{{576}}{{625}}} \sqrt {\dfrac{{49}}{{625}}} } \right]$
Computing the square roots,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \dfrac{{24}}{{25}}.\dfrac{7}{{25}}} \right]$
Doing the calculations, we get,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \dfrac{{168}}{{625}}} \right]$
$ = {\cos ^{ - 1}}\left[ 0 \right]$
Now, we know, $\cos \dfrac{\pi }{2} = 0$.
So, substituting this value, we get,
$ = {\cos ^{ - 1}}\left[ {\cos \dfrac{\pi }{2}} \right]$
Now, we know, ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $.
Using this property, we get,
$2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right) = \dfrac{\pi }{2}$
The correct answer is option $(1)$.
So, the correct answer is “Option 1”.
Note: Many a times, we may get confused due to the values inside the inverse sine and cosine functions, as the angles of these values are not known to us. But we are to use just simple trigonometric properties to solve these kinds of problems and approaching to find the values of the inverse functions whose angles are not generally known to us will not help. Take care of the calculations while solving the problem.
${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left[ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right]$
We can find the required value of the given equation.
Complete step-by-step answer:
Given, $2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right)$
Let \[2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) = A\]
Dividing both sides by $2$, we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) = \dfrac{A}{2}$
Taking sine function on both sides, we get,
$ \Rightarrow \dfrac{3}{5} = \sin \left( {\dfrac{A}{2}} \right)$
Now, changing the sides, we get,
$ \Rightarrow \sin \left( {\dfrac{A}{2}} \right) = \dfrac{3}{5}$
Now, using the identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$, we get,
${\sin ^2}\left( {\dfrac{A}{2}} \right) + {\cos ^2}\left( {\dfrac{A}{2}} \right) = 1$
Taking, ${\sin ^2}\left( {\dfrac{A}{2}} \right)$ on right hand side, we get,
$ \Rightarrow {\cos ^2}\left( {\dfrac{A}{2}} \right) = 1 - {\sin ^2}\left( {\dfrac{A}{2}} \right)$
Taking square root on both sides, gives us,
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {1 - {{\sin }^2}\left( {\dfrac{A}{2}} \right)} $
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}} $
Since, we got, $\sin \left( {\dfrac{A}{2}} \right) = \dfrac{3}{5}$
Taking square root on both sides of the equation, we got,
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {1 - \dfrac{9}{{25}}} $
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{16}}{{25}}} $
$ \Rightarrow \cos \left( {\dfrac{A}{2}} \right) = \dfrac{4}{5}$
Now, replacing the value of $\cos \left( {\dfrac{A}{2}} \right)$ in the trigonometric property of cosine function, $\cos \theta = 2{\cos ^2}\left( {\dfrac{\theta }{2}} \right) - 1$, we get,
$\cos A = 2{\cos ^2}\left( {\dfrac{A}{2}} \right) - 1$
$ \Rightarrow \cos A = 2{\left( {\dfrac{4}{5}} \right)^2} - 1$
Now, simplifying, we get,
$ \Rightarrow \cos A = 2.\dfrac{{16}}{{25}} - 1$
$ \Rightarrow \cos A = \dfrac{{32}}{{25}} - 1$
$ \Rightarrow \cos A = \dfrac{7}{{25}}$
Taking inverse cosine function on both sides of the equation, we get,
$ \Rightarrow A = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right)$
Now, the given equation is,
$2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right)$
Replacing, $2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) = A = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right)$ in the given equation, we get,
$ = {\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right)$
Now, using the property of inverse cosine function, ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left[ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right]$, we get,
$ = {\cos ^{ - 1}}\left[ {\left( {\dfrac{7}{{25}}} \right)\left( {\dfrac{{24}}{{25}}} \right) - \sqrt {1 - {{\left( {\dfrac{7}{{25}}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{24}}{{25}}} \right)}^2}} } \right]$
Now, on simplifying, we get,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \sqrt {1 - \dfrac{{49}}{{625}}} \sqrt {1 - \dfrac{{576}}{{625}}} } \right]$
Taking LCM, we get,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \sqrt {\dfrac{{576}}{{625}}} \sqrt {\dfrac{{49}}{{625}}} } \right]$
Computing the square roots,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \dfrac{{24}}{{25}}.\dfrac{7}{{25}}} \right]$
Doing the calculations, we get,
$ = {\cos ^{ - 1}}\left[ {\dfrac{{168}}{{625}} - \dfrac{{168}}{{625}}} \right]$
$ = {\cos ^{ - 1}}\left[ 0 \right]$
Now, we know, $\cos \dfrac{\pi }{2} = 0$.
So, substituting this value, we get,
$ = {\cos ^{ - 1}}\left[ {\cos \dfrac{\pi }{2}} \right]$
Now, we know, ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $.
Using this property, we get,
$2{\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}}} \right) = \dfrac{\pi }{2}$
The correct answer is option $(1)$.
So, the correct answer is “Option 1”.
Note: Many a times, we may get confused due to the values inside the inverse sine and cosine functions, as the angles of these values are not known to us. But we are to use just simple trigonometric properties to solve these kinds of problems and approaching to find the values of the inverse functions whose angles are not generally known to us will not help. Take care of the calculations while solving the problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

