
Solve: \[2{\log _4}\left( {4 - x} \right) = 4 - {\log _2}\left( { - 2 - x} \right)\].
Answer
587.1k+ views
Hint:
First, we will apply the log rule,\[{\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\] in right hand side of the above equation and simplify. Then we will add \[{\log _4}\left( { - 2 - x} \right)\] to both sides of the above equation and add the log rule, \[{\log _c}a + {\log _c}b = {\log _c}ab\] in the obtained equation. Then we will use the logarithmic definition, if \[{\log _a}b = c\], then \[b = {a^c}\] in the obtained equation and then simplify to find the required value.
Complete step by step solution:
We are given that \[2{\log _4}\left( {4 - x} \right) = 4 - {\log _2}\left( { - 2 - x} \right)\].
Applying the log rule,\[{\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\] in right hand side of the above equation and simplify, we get
\[
\Rightarrow {\log _2}\left( { - 2 - x} \right) = 4 - \dfrac{{{{\log }_4}\left( { - 2 - x} \right)}}{{{{\log }_4}2}} \\
\Rightarrow 2{\log _2}\left( { - 2 - x} \right) = 4 - 2{\log _4}\left( { - 2 - x} \right) \\
\]
Dividing both sides by 2 in the above equation, we get
\[
\Rightarrow \dfrac{2}{2}{\log _2}\left( { - 2 - x} \right) = \dfrac{4}{2} - \dfrac{{2{{\log }_4}\left( { - 2 - x} \right)}}{2} \\
\Rightarrow {\log _2}\left( { - 2 - x} \right) = 2 - {\log _4}\left( { - 2 - x} \right) \\
\]
Adding \[{\log _4}\left( { - 2 - x} \right)\] to both sides of the above equation, we get
\[
\Rightarrow {\log _2}\left( { - 2 - x} \right) + {\log _4}\left( { - 2 - x} \right) = 2 - {\log _4}\left( { - 2 - x} \right) + {\log _4}\left( { - 2 - x} \right) \\
\Rightarrow {\log _2}\left( { - 2 - x} \right) + {\log _4}\left( { - 2 - x} \right) = 2 \\
\]
Applying the log rule, \[{\log _c}a + {\log _c}b = {\log _c}ab\] in the above equation, we get
\[ \Rightarrow {\log _4}\left( {\left( {4 - x} \right)\left( { - 2 - x} \right)} \right) = 2\]
Using the logarithmic definition, if \[{\log _a}b = c\], then \[b = {a^c}\] in the above equation, we get
\[
\Rightarrow \left( {4 - x} \right)\left( { - 2 - x} \right) = {4^2} \\
\Rightarrow \left( {4 - x} \right)\left( { - 2 - x} \right) = 16 \\
\Rightarrow - 8 - 4x + 2x + {x^2} = 16 \\
\Rightarrow - 8 - 2x + {x^2} = 16 \\
\]
Subtracting the above equation by 16 on both sides, we get
\[
\Rightarrow - 8 - 2x + {x^2} - 16 = 16 - 16 \\
\Rightarrow - 24 - 2x + {x^2} = 0 \\
\Rightarrow {x^2} - 2x - 24 = 0 \\
\]
Factorizing the above equation by splitting the middle term, we get
\[
\Rightarrow {x^2} - 6x + 4x - 24 = 0 \\
\Rightarrow x\left( {x - 6} \right) + 4\left( {x - 6} \right) = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 6} \right) = 0 \\
\]
Taking \[x + 4 = 0\] and simplifying it, we get
\[ \Rightarrow x = - 4\]
Taking \[x - 6 = 0\] and simplifying it, we get
\[ \Rightarrow x = 6\]
But since we know that \[x\] in the function \[\log x\] is always greater than 0 and when \[x = 6\], we have
\[ \Rightarrow - 2 - 6 = - 8\]
So, the value of \[x\] is \[ - 4\].
Note:
The key point here is to use the properties of the logarithm and the trigonometric rule right time in the question or else it will be really confusing to solve. The power rule can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
First, we will apply the log rule,\[{\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\] in right hand side of the above equation and simplify. Then we will add \[{\log _4}\left( { - 2 - x} \right)\] to both sides of the above equation and add the log rule, \[{\log _c}a + {\log _c}b = {\log _c}ab\] in the obtained equation. Then we will use the logarithmic definition, if \[{\log _a}b = c\], then \[b = {a^c}\] in the obtained equation and then simplify to find the required value.
Complete step by step solution:
We are given that \[2{\log _4}\left( {4 - x} \right) = 4 - {\log _2}\left( { - 2 - x} \right)\].
Applying the log rule,\[{\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\] in right hand side of the above equation and simplify, we get
\[
\Rightarrow {\log _2}\left( { - 2 - x} \right) = 4 - \dfrac{{{{\log }_4}\left( { - 2 - x} \right)}}{{{{\log }_4}2}} \\
\Rightarrow 2{\log _2}\left( { - 2 - x} \right) = 4 - 2{\log _4}\left( { - 2 - x} \right) \\
\]
Dividing both sides by 2 in the above equation, we get
\[
\Rightarrow \dfrac{2}{2}{\log _2}\left( { - 2 - x} \right) = \dfrac{4}{2} - \dfrac{{2{{\log }_4}\left( { - 2 - x} \right)}}{2} \\
\Rightarrow {\log _2}\left( { - 2 - x} \right) = 2 - {\log _4}\left( { - 2 - x} \right) \\
\]
Adding \[{\log _4}\left( { - 2 - x} \right)\] to both sides of the above equation, we get
\[
\Rightarrow {\log _2}\left( { - 2 - x} \right) + {\log _4}\left( { - 2 - x} \right) = 2 - {\log _4}\left( { - 2 - x} \right) + {\log _4}\left( { - 2 - x} \right) \\
\Rightarrow {\log _2}\left( { - 2 - x} \right) + {\log _4}\left( { - 2 - x} \right) = 2 \\
\]
Applying the log rule, \[{\log _c}a + {\log _c}b = {\log _c}ab\] in the above equation, we get
\[ \Rightarrow {\log _4}\left( {\left( {4 - x} \right)\left( { - 2 - x} \right)} \right) = 2\]
Using the logarithmic definition, if \[{\log _a}b = c\], then \[b = {a^c}\] in the above equation, we get
\[
\Rightarrow \left( {4 - x} \right)\left( { - 2 - x} \right) = {4^2} \\
\Rightarrow \left( {4 - x} \right)\left( { - 2 - x} \right) = 16 \\
\Rightarrow - 8 - 4x + 2x + {x^2} = 16 \\
\Rightarrow - 8 - 2x + {x^2} = 16 \\
\]
Subtracting the above equation by 16 on both sides, we get
\[
\Rightarrow - 8 - 2x + {x^2} - 16 = 16 - 16 \\
\Rightarrow - 24 - 2x + {x^2} = 0 \\
\Rightarrow {x^2} - 2x - 24 = 0 \\
\]
Factorizing the above equation by splitting the middle term, we get
\[
\Rightarrow {x^2} - 6x + 4x - 24 = 0 \\
\Rightarrow x\left( {x - 6} \right) + 4\left( {x - 6} \right) = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 6} \right) = 0 \\
\]
Taking \[x + 4 = 0\] and simplifying it, we get
\[ \Rightarrow x = - 4\]
Taking \[x - 6 = 0\] and simplifying it, we get
\[ \Rightarrow x = 6\]
But since we know that \[x\] in the function \[\log x\] is always greater than 0 and when \[x = 6\], we have
\[ \Rightarrow - 2 - 6 = - 8\]
So, the value of \[x\] is \[ - 4\].
Note:
The key point here is to use the properties of the logarithm and the trigonometric rule right time in the question or else it will be really confusing to solve. The power rule can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

