
How do you solve $2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6=0$?
Answer
542.4k+ views
Hint: We reform the given equation with the help of assumption of ${{5}^{2x}}=a$. Then we use the vanishing method. In this method we find a number $a$ such that for $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$. We assume $f\left( a \right)=2{{a}^{3}}-9{{a}^{2}}+13a-6$ and take the value of $a$ as 1.
Complete step by step solution:
We have an equation of $2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6=0$. We assume ${{5}^{2x}}=a$.
We now apply the concept of indices where we have the identity of ${{p}^{mn}}={{\left( {{p}^{m}} \right)}^{n}}$.
Therefore, ${{5}^{6x}}={{\left( {{5}^{2x}} \right)}^{3}},{{5}^{4x}}={{\left( {{5}^{2x}} \right)}^{2}}$ and replacing the value we get ${{5}^{6x}}={{a}^{3}},{{5}^{4x}}={{a}^{2}}$.
The equation becomes $2{{a}^{3}}-9{{a}^{2}}+13a-6=0$. It’s a cubic equation of $a$.
We use vanishing method to solve the problem.
We find the value of $a$ for which the function $f\left( a \right)=2{{a}^{3}}-9{{a}^{2}}+13a-6=0$. We take $a=1$.
We can see $f\left( 1 \right)=2\times {{1}^{3}}-9\times {{1}^{2}}+13\times 1-6=2-9+13-6=0$.
So, the root of the $f\left( a \right)=2{{a}^{3}}-9{{a}^{2}}+13a-6$ will be the function $\left( a-1 \right)$.
Therefore, the term $\left( a-1 \right)$ is a factor of the polynomial $2{{a}^{3}}-9{{a}^{2}}+13a-6$.
We can now divide the polynomial $2{{a}^{3}}-9{{a}^{2}}+13a-6$ by $\left( a-1 \right)$.
\[a-1\overset{2{{a}^{2}}-7a+6}{\overline{\left){\begin{align}
& 2{{a}^{3}}-9{{a}^{2}}+13a-6 \\
& \underline{2{{a}^{3}}-2{{a}^{2}}} \\
& -7{{a}^{2}}+13a \\
& \underline{-7{{a}^{2}}+7a} \\
& 6a-6 \\
& \underline{6a-6} \\
& 0 \\
\end{align}}\right.}}\]
We first tried to equate the highest power of the dividend with the highest power of the divisor and that’s why we multiplied with $2{{a}^{2}}$. We get \[2{{a}^{3}}-2{{a}^{2}}\]. We subtract it to get \[-7{{a}^{2}}+13a\]. We again equate with the highest power of the remaining terms. We multiply with $-7a$ and subtract to get \[6a-6\]. At the end we had to multiply with 6 to complete the division. The quotient is \[2{{a}^{2}}-7a+6\].
We still can factor \[2{{a}^{2}}-7a+6\].
We apply grouping method where \[2{{a}^{2}}-7a+6=2{{a}^{2}}-3a-4a+6\].
\[\begin{align}
& 2{{a}^{2}}-3a-4a+6 \\
& =a\left( 2a-3 \right)-2\left( 2a-3 \right) \\
& =\left( 2a-3 \right)\left( a-2 \right) \\
\end{align}\]
Therefore, the factorised form of \[2{{a}^{2}}-7a+6\] is \[\left( 2a-3 \right)\left( a-2 \right)\].
The final factorisation is $2{{a}^{3}}-9{{a}^{2}}+13a-6=\left( a-1 \right)\left( 2a-3 \right)\left( a-2 \right)$.
The solutions for $\left( a-1 \right)\left( 2a-3 \right)\left( a-2 \right)=0$ is $a=1,\dfrac{3}{2},2$ which gives ${{5}^{2x}}=1,\dfrac{3}{2},2$.
We take logarithm both sides to get
For ${{5}^{2x}}=1$
$\begin{align}
& {{\log }_{5}}\left( {{5}^{2x}} \right)={{\log }_{5}}1=0 \\
& \Rightarrow 2x=0 \\
& \Rightarrow x=0 \\
\end{align}$
For ${{5}^{2x}}=\dfrac{3}{2}$
$\begin{align}
& {{\log }_{5}}\left( {{5}^{2x}} \right)={{\log }_{5}}\left( \dfrac{3}{2} \right) \\
& \Rightarrow 2x={{\log }_{5}}\left( \dfrac{3}{2} \right) \\
& \Rightarrow x=\dfrac{1}{2}{{\log }_{5}}\left( \dfrac{3}{2} \right) \\
\end{align}$
For ${{5}^{2x}}=2$
$\begin{align}
& {{\log }_{5}}\left( {{5}^{2x}} \right)={{\log }_{5}}2 \\
& \Rightarrow 2x={{\log }_{5}}\left( 2 \right) \\
& \Rightarrow x=\dfrac{1}{2}{{\log }_{5}}\left( 2 \right) \\
\end{align}$
The final solutions are $x=0,\dfrac{1}{2}{{\log }_{5}}\left( \dfrac{3}{2} \right),\dfrac{1}{2}{{\log }_{5}}\left( 2 \right)$.
Note: We find the value of x for which the function $f\left( x \right)=2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6$. We can see $f\left( 0 \right)=2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6=2-9+13-6=0$. So, the root of the $f\left( x \right)=2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6$ will be the function 0.
Complete step by step solution:
We have an equation of $2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6=0$. We assume ${{5}^{2x}}=a$.
We now apply the concept of indices where we have the identity of ${{p}^{mn}}={{\left( {{p}^{m}} \right)}^{n}}$.
Therefore, ${{5}^{6x}}={{\left( {{5}^{2x}} \right)}^{3}},{{5}^{4x}}={{\left( {{5}^{2x}} \right)}^{2}}$ and replacing the value we get ${{5}^{6x}}={{a}^{3}},{{5}^{4x}}={{a}^{2}}$.
The equation becomes $2{{a}^{3}}-9{{a}^{2}}+13a-6=0$. It’s a cubic equation of $a$.
We use vanishing method to solve the problem.
We find the value of $a$ for which the function $f\left( a \right)=2{{a}^{3}}-9{{a}^{2}}+13a-6=0$. We take $a=1$.
We can see $f\left( 1 \right)=2\times {{1}^{3}}-9\times {{1}^{2}}+13\times 1-6=2-9+13-6=0$.
So, the root of the $f\left( a \right)=2{{a}^{3}}-9{{a}^{2}}+13a-6$ will be the function $\left( a-1 \right)$.
Therefore, the term $\left( a-1 \right)$ is a factor of the polynomial $2{{a}^{3}}-9{{a}^{2}}+13a-6$.
We can now divide the polynomial $2{{a}^{3}}-9{{a}^{2}}+13a-6$ by $\left( a-1 \right)$.
\[a-1\overset{2{{a}^{2}}-7a+6}{\overline{\left){\begin{align}
& 2{{a}^{3}}-9{{a}^{2}}+13a-6 \\
& \underline{2{{a}^{3}}-2{{a}^{2}}} \\
& -7{{a}^{2}}+13a \\
& \underline{-7{{a}^{2}}+7a} \\
& 6a-6 \\
& \underline{6a-6} \\
& 0 \\
\end{align}}\right.}}\]
We first tried to equate the highest power of the dividend with the highest power of the divisor and that’s why we multiplied with $2{{a}^{2}}$. We get \[2{{a}^{3}}-2{{a}^{2}}\]. We subtract it to get \[-7{{a}^{2}}+13a\]. We again equate with the highest power of the remaining terms. We multiply with $-7a$ and subtract to get \[6a-6\]. At the end we had to multiply with 6 to complete the division. The quotient is \[2{{a}^{2}}-7a+6\].
We still can factor \[2{{a}^{2}}-7a+6\].
We apply grouping method where \[2{{a}^{2}}-7a+6=2{{a}^{2}}-3a-4a+6\].
\[\begin{align}
& 2{{a}^{2}}-3a-4a+6 \\
& =a\left( 2a-3 \right)-2\left( 2a-3 \right) \\
& =\left( 2a-3 \right)\left( a-2 \right) \\
\end{align}\]
Therefore, the factorised form of \[2{{a}^{2}}-7a+6\] is \[\left( 2a-3 \right)\left( a-2 \right)\].
The final factorisation is $2{{a}^{3}}-9{{a}^{2}}+13a-6=\left( a-1 \right)\left( 2a-3 \right)\left( a-2 \right)$.
The solutions for $\left( a-1 \right)\left( 2a-3 \right)\left( a-2 \right)=0$ is $a=1,\dfrac{3}{2},2$ which gives ${{5}^{2x}}=1,\dfrac{3}{2},2$.
We take logarithm both sides to get
For ${{5}^{2x}}=1$
$\begin{align}
& {{\log }_{5}}\left( {{5}^{2x}} \right)={{\log }_{5}}1=0 \\
& \Rightarrow 2x=0 \\
& \Rightarrow x=0 \\
\end{align}$
For ${{5}^{2x}}=\dfrac{3}{2}$
$\begin{align}
& {{\log }_{5}}\left( {{5}^{2x}} \right)={{\log }_{5}}\left( \dfrac{3}{2} \right) \\
& \Rightarrow 2x={{\log }_{5}}\left( \dfrac{3}{2} \right) \\
& \Rightarrow x=\dfrac{1}{2}{{\log }_{5}}\left( \dfrac{3}{2} \right) \\
\end{align}$
For ${{5}^{2x}}=2$
$\begin{align}
& {{\log }_{5}}\left( {{5}^{2x}} \right)={{\log }_{5}}2 \\
& \Rightarrow 2x={{\log }_{5}}\left( 2 \right) \\
& \Rightarrow x=\dfrac{1}{2}{{\log }_{5}}\left( 2 \right) \\
\end{align}$
The final solutions are $x=0,\dfrac{1}{2}{{\log }_{5}}\left( \dfrac{3}{2} \right),\dfrac{1}{2}{{\log }_{5}}\left( 2 \right)$.
Note: We find the value of x for which the function $f\left( x \right)=2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6$. We can see $f\left( 0 \right)=2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6=2-9+13-6=0$. So, the root of the $f\left( x \right)=2\left( {{5}^{6x}} \right)-9\left( {{5}^{4x}} \right)+13\left( {{5}^{2x}} \right)-6$ will be the function 0.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

