
Solve \[2{\cos ^2}x + 3\sin x = 0\]
Answer
556.8k+ views
Hint:
To solve the above equation, firstly we will make it equation of only $\sin x$ or $\cos x$ function with the help of ${\sin ^2}x + {\cos ^2}x = 1$ identity then we will solve this equation as a quadratic equation by finding its factors.
Complete step by step solution:
\[2{\cos ^2}x + 3\sin x = 0......(1)\]
We know that, in trigonometry we have and identity${\sin ^2}x + {\cos ^2}x = 1$, which we can mold as per our requirement as ${\cos ^2}x = 1 - {\sin ^2}x$and put in the equation (1) in the place of ${\cos ^2}x$
$2(1 - {\sin ^2}x) + 3\sin x = 0$
Now we will simplify the above equation by opening the bracket.
$2 - 2{\sin ^2}x + 3\sin x = 0$
We will keep $\sin x$terms on left side and constant on right side
$2{\sin ^2}x - 3\sin x = 2$
Now we will put $\sin x = y$to make it quadratic equation
$2{y^2} - 3y - 2 = 0$
To solve quadratic equation, we need to make factors, which on multiplication give -4 and on subtraction give -3
$2{y^2} - 4y + y - 2 = 0$
Take $ + 2y$common from first two terms and +1 common from last two terms
$2y(y - 2) + 1(y - 2) = 0$
Now, we will take $(y - 2)$common from above equation
$(y - 2)(2y + 1) = 0$
From above equation, we get two solutions which are as follows:
$y = 2$and $y = - \dfrac{1}{2}$
Here, we will put the real of $y = \sin x$
$\sin x = 2$and $\sin x = - \dfrac{1}{2}......(2)$
We know that value of $\sin x$lies between 1 and -1
So, $\sin x = 2$is not possible
The value of $\sin x = - \dfrac{1}{2}$ is the solution of the equation.
And $\sin \dfrac{\pi }{6} = \sin 30^\circ = \dfrac{1}{2}$
We know that we need a negative angle of sin, which can be in third and fourth quadrants.
So, we add $\pi $ to$\dfrac{\pi }{6}$and subtract$\dfrac{\pi }{6}$ from $2\pi $,as we want sin in third and fourth quadrants.
We can write $\sin \left( {\dfrac{\pi }{6} + \pi } \right) = \sin \dfrac{{7\pi }}{6} = - \dfrac{1}{2}......(3)$
And $\sin \left( {2\pi - \dfrac{\pi }{6}} \right) = \sin \dfrac{{11\pi }}{6} = - \dfrac{1}{2}......(4)$
Now, we equate equation 2 with equation 3 and 4
$\sin x = \sin \dfrac{{7\pi }}{6}$ And$\sin x = \sin \dfrac{{11\pi }}{6}$
$\sin $will cancel out from both sides in both above equations.
Hence, we got value of $x = \dfrac{{7\pi }}{6}$and $x = \dfrac{{11\pi }}{6}$
Note:
We should keep in mind that in the trigonometry equation firstly we should apply a suitable identity to simplify the equation as per our requirement, and after simplification we automatically get the way to solve the simplified equation easily.
To solve the above equation, firstly we will make it equation of only $\sin x$ or $\cos x$ function with the help of ${\sin ^2}x + {\cos ^2}x = 1$ identity then we will solve this equation as a quadratic equation by finding its factors.
Complete step by step solution:
\[2{\cos ^2}x + 3\sin x = 0......(1)\]
We know that, in trigonometry we have and identity${\sin ^2}x + {\cos ^2}x = 1$, which we can mold as per our requirement as ${\cos ^2}x = 1 - {\sin ^2}x$and put in the equation (1) in the place of ${\cos ^2}x$
$2(1 - {\sin ^2}x) + 3\sin x = 0$
Now we will simplify the above equation by opening the bracket.
$2 - 2{\sin ^2}x + 3\sin x = 0$
We will keep $\sin x$terms on left side and constant on right side
$2{\sin ^2}x - 3\sin x = 2$
Now we will put $\sin x = y$to make it quadratic equation
$2{y^2} - 3y - 2 = 0$
To solve quadratic equation, we need to make factors, which on multiplication give -4 and on subtraction give -3
$2{y^2} - 4y + y - 2 = 0$
Take $ + 2y$common from first two terms and +1 common from last two terms
$2y(y - 2) + 1(y - 2) = 0$
Now, we will take $(y - 2)$common from above equation
$(y - 2)(2y + 1) = 0$
From above equation, we get two solutions which are as follows:
$y = 2$and $y = - \dfrac{1}{2}$
Here, we will put the real of $y = \sin x$
$\sin x = 2$and $\sin x = - \dfrac{1}{2}......(2)$
We know that value of $\sin x$lies between 1 and -1
So, $\sin x = 2$is not possible
The value of $\sin x = - \dfrac{1}{2}$ is the solution of the equation.
And $\sin \dfrac{\pi }{6} = \sin 30^\circ = \dfrac{1}{2}$
We know that we need a negative angle of sin, which can be in third and fourth quadrants.
So, we add $\pi $ to$\dfrac{\pi }{6}$and subtract$\dfrac{\pi }{6}$ from $2\pi $,as we want sin in third and fourth quadrants.
We can write $\sin \left( {\dfrac{\pi }{6} + \pi } \right) = \sin \dfrac{{7\pi }}{6} = - \dfrac{1}{2}......(3)$
And $\sin \left( {2\pi - \dfrac{\pi }{6}} \right) = \sin \dfrac{{11\pi }}{6} = - \dfrac{1}{2}......(4)$
Now, we equate equation 2 with equation 3 and 4
$\sin x = \sin \dfrac{{7\pi }}{6}$ And$\sin x = \sin \dfrac{{11\pi }}{6}$
$\sin $will cancel out from both sides in both above equations.
Hence, we got value of $x = \dfrac{{7\pi }}{6}$and $x = \dfrac{{11\pi }}{6}$
Note:
We should keep in mind that in the trigonometry equation firstly we should apply a suitable identity to simplify the equation as per our requirement, and after simplification we automatically get the way to solve the simplified equation easily.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

