
Solve \[18{{x}^{3}}+81{{x}^{2}}+121x+60=0\] give that the root is equal to half of the sum of the remaining roots?
Answer
586.2k+ views
Hint: Assume that the roots of the given cubic equation are \[\alpha ,\beta \] , and \[\gamma \] . It is given that one root is equal to half the sum of the remaining roots, \[\alpha =\dfrac{\beta +\gamma }{2}\] . The given cubic equation is \[18{{x}^{3}}+81{{x}^{2}}+121x+60=0\] . Now, compare the cubic equation \[18{{x}^{3}}+81{{x}^{2}}+121x+60=0\] with the standard form of the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] and get the value of \[a,b,c\] , and \[d\] . We know the formula, the sum of all roots = \[\alpha +\beta +\gamma =\dfrac{-b}{a}\] , the sum of the product of roots taken two at a time = \[\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}\] , and the product of all roots = \[\alpha \beta \gamma =\dfrac{d}{a}\] . Now, using \[\alpha =\dfrac{\beta +\gamma }{2}\] and \[\alpha +\beta +\gamma =\dfrac{-b}{a}\] , get the value of \[\alpha \] . Now, put the value of \[\alpha \] in the equation \[\alpha =\dfrac{\beta +\gamma }{2}\] and get the value of \[\gamma \] in terms of \[\beta \] . Now, put the value of \[\alpha \] and \[\gamma \] in the equation \[\alpha \beta \gamma =\dfrac{d}{a}\] and get the value of \[\beta \] . Now, using the value of \[\beta \] gets the value of \[\gamma \] using the equation, \[-3-\beta =\gamma \] . Solve it further and get the value of \[\alpha ,\beta \] , and \[\gamma \] .
Complete step-by-step answer:
According to the question, it is given that
The given cubic equation = \[18{{x}^{3}}+81{{x}^{2}}+121x+60=0\] ……………………………………………..(1)
First of all, let us assume that the roots of the given cubic equation are \[\alpha ,\beta \] , and \[\gamma \] ………………………………..(2)
It is given that one root is equal to half the sum of the remaining roots.
\[\alpha =\dfrac{\beta +\gamma }{2}\]
\[\Rightarrow 2\alpha =\beta +\gamma \] ………………………………………..(3)
We know the standard cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] …………………………………………..(4)
The sum of all roots = \[\dfrac{-b}{a}\] ……………………………………(5)
The sum of the product of roots taken two at a time = \[\dfrac{c}{a}\] …………………………………………..(6)
The product of all roots = \[\dfrac{d}{a}\] ………………………………………(7)
Now, on comparing equation (1) and equation (4), we get
\[a=18\] ……………………………..(8)
\[b=81\] ………………………………..(9)
\[c=121\] …………………………………..(10)
\[d=60\] ………………………………………..(11)
From equation (5), equation (8), and equation (9), we have
The sum of all roots = \[\dfrac{-81}{18}=\dfrac{-9}{2}\] ……………………………………….(12)
We have assumed that \[\alpha ,\beta \] , and \[\gamma \] are the roots of the given cubic equation.
So, the sum of all roots = \[\alpha +\beta +\gamma \] …………………………………………..(13)
Now, from equation (3), equation (12), and equation (13), we get
\[\begin{align}
& \Rightarrow \alpha +\left( \beta +\gamma \right)=\dfrac{-9}{2} \\
& \Rightarrow \alpha +2\alpha =\dfrac{-9}{2} \\
& \Rightarrow 3\alpha =\dfrac{-9}{2} \\
\end{align}\]
\[\Rightarrow \alpha =-\dfrac{3}{2}\] ………………………………..(14)
Now, from equation (3) and equation (14), we get
\[\begin{align}
& \Rightarrow 2\times \dfrac{-3}{2}=\beta +\gamma \\
& \Rightarrow -3=\beta +\gamma \\
\end{align}\]
\[\Rightarrow -3-\beta =\gamma \] …………………………………………..(15)
From equation (6), equation (8), and equation (11), we have
The product of all roots = \[\dfrac{-60}{18}=\dfrac{-10}{3}\] ……………………………………….(16)
We have assumed that \[\alpha ,\beta \] , and \[\gamma \] are the roots of the given cubic equation.
So, the product of all roots = \[\alpha \beta \gamma \] ……………………………………….(17)
Now, from equation (14), equation (15), equation (16), and equation (17), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{-3}{2} \right)\beta \left( -3-\beta \right)=\dfrac{-10}{3} \\
& \Rightarrow 9\beta \left( 3+\beta \right)=-20 \\
& \Rightarrow 9{{\beta }^{2}}+27\beta +20=0 \\
& \Rightarrow 9{{\beta }^{2}}+15\beta +12\beta +20=0 \\
& \Rightarrow 3\beta \left( 3\beta +5 \right)+4\left( 3\beta +5 \right)=0 \\
\end{align}\]
\[\Rightarrow \left( 3\beta +5 \right)\left( 3\beta +4 \right)=0\]
So, \[\beta =\dfrac{-5}{3}\] or \[\beta =\dfrac{-4}{3}\] …………………………………….(18)
On putting \[\beta =\dfrac{-5}{3}\] in equation (15), we get
\[\begin{align}
& \Rightarrow -3-\left( \dfrac{-5}{3} \right)=\gamma \\
& \Rightarrow \dfrac{-9+5}{3}=\gamma \\
\end{align}\]
\[\Rightarrow \dfrac{-4}{3}=\gamma \] …………………………………….(19)
On putting \[\beta =\dfrac{-4}{3}\] in equation (15), we get
\[\begin{align}
& \Rightarrow -3-\left( \dfrac{-4}{3} \right)=\gamma \\
& \Rightarrow \dfrac{-9+4}{3}=\gamma \\
\end{align}\]
\[\Rightarrow \dfrac{-5}{3}=\gamma \] …………………………………….(20)
Now, equation (14), equation (18), equation (19), and equation (20), we have the value of \[\alpha ,\beta \] , and \[\gamma \] .
\[\alpha =-\dfrac{3}{2}\] , \[\beta =\dfrac{-5}{3}\] or \[\beta =\dfrac{-4}{3}\] , and \[\gamma =\dfrac{-4}{3}\] or \[\gamma =\dfrac{-5}{3}\] .
Therefore, the roots of the given cubic equation are \[\dfrac{-3}{2}\] , \[\dfrac{-4}{3}\] , and \[\dfrac{-5}{3}\] .
Note: We can also solve this question using the factorization method.
According to the question, the given cubic equation is
\[\begin{align}
& \Rightarrow 18{{x}^{3}}+81{{x}^{2}}+121x+60=0 \\
& \Rightarrow 18{{x}^{3}}+27{{x}^{2}}+54{{x}^{2}}+81x+40x+60 \\
& \Rightarrow 9{{x}^{2}}\left( 2x+3 \right)+27x\left( 2x+3 \right)+20\left( 2x+3 \right)=0 \\
& \Rightarrow \left( 2x+3 \right)\left( 9{{x}^{2}}+27x+20 \right)=0 \\
& \Rightarrow \left( 2x+3 \right)\left\{ \left( 9{{x}^{2}}+15x+12x+20 \right) \right\}=0 \\
& \Rightarrow \left( 2x+3 \right)\left\{ 3x\left( 3x+5 \right)+4\left( 3x+5 \right) \right\}=0 \\
& \Rightarrow \left( 2x+3 \right)\left( 3x+5 \right)\left( 3x+4 \right)=0 \\
\end{align}\]
Here, we have the values of x for which the value of the given cubic equation is equal to zero.
So, \[x=\dfrac{-3}{2}\] , \[x=\dfrac{-4}{3}\] , and \[x=\dfrac{-5}{3}\] .
We know the property that the roots are values of a cubic equation for which the values of the cubic equation is equal to zero.
The roots of the given cubic equation are \[\dfrac{-3}{2}\] , \[\dfrac{-4}{3}\] , and \[\dfrac{-5}{3}\] .
Complete step-by-step answer:
According to the question, it is given that
The given cubic equation = \[18{{x}^{3}}+81{{x}^{2}}+121x+60=0\] ……………………………………………..(1)
First of all, let us assume that the roots of the given cubic equation are \[\alpha ,\beta \] , and \[\gamma \] ………………………………..(2)
It is given that one root is equal to half the sum of the remaining roots.
\[\alpha =\dfrac{\beta +\gamma }{2}\]
\[\Rightarrow 2\alpha =\beta +\gamma \] ………………………………………..(3)
We know the standard cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] …………………………………………..(4)
The sum of all roots = \[\dfrac{-b}{a}\] ……………………………………(5)
The sum of the product of roots taken two at a time = \[\dfrac{c}{a}\] …………………………………………..(6)
The product of all roots = \[\dfrac{d}{a}\] ………………………………………(7)
Now, on comparing equation (1) and equation (4), we get
\[a=18\] ……………………………..(8)
\[b=81\] ………………………………..(9)
\[c=121\] …………………………………..(10)
\[d=60\] ………………………………………..(11)
From equation (5), equation (8), and equation (9), we have
The sum of all roots = \[\dfrac{-81}{18}=\dfrac{-9}{2}\] ……………………………………….(12)
We have assumed that \[\alpha ,\beta \] , and \[\gamma \] are the roots of the given cubic equation.
So, the sum of all roots = \[\alpha +\beta +\gamma \] …………………………………………..(13)
Now, from equation (3), equation (12), and equation (13), we get
\[\begin{align}
& \Rightarrow \alpha +\left( \beta +\gamma \right)=\dfrac{-9}{2} \\
& \Rightarrow \alpha +2\alpha =\dfrac{-9}{2} \\
& \Rightarrow 3\alpha =\dfrac{-9}{2} \\
\end{align}\]
\[\Rightarrow \alpha =-\dfrac{3}{2}\] ………………………………..(14)
Now, from equation (3) and equation (14), we get
\[\begin{align}
& \Rightarrow 2\times \dfrac{-3}{2}=\beta +\gamma \\
& \Rightarrow -3=\beta +\gamma \\
\end{align}\]
\[\Rightarrow -3-\beta =\gamma \] …………………………………………..(15)
From equation (6), equation (8), and equation (11), we have
The product of all roots = \[\dfrac{-60}{18}=\dfrac{-10}{3}\] ……………………………………….(16)
We have assumed that \[\alpha ,\beta \] , and \[\gamma \] are the roots of the given cubic equation.
So, the product of all roots = \[\alpha \beta \gamma \] ……………………………………….(17)
Now, from equation (14), equation (15), equation (16), and equation (17), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{-3}{2} \right)\beta \left( -3-\beta \right)=\dfrac{-10}{3} \\
& \Rightarrow 9\beta \left( 3+\beta \right)=-20 \\
& \Rightarrow 9{{\beta }^{2}}+27\beta +20=0 \\
& \Rightarrow 9{{\beta }^{2}}+15\beta +12\beta +20=0 \\
& \Rightarrow 3\beta \left( 3\beta +5 \right)+4\left( 3\beta +5 \right)=0 \\
\end{align}\]
\[\Rightarrow \left( 3\beta +5 \right)\left( 3\beta +4 \right)=0\]
So, \[\beta =\dfrac{-5}{3}\] or \[\beta =\dfrac{-4}{3}\] …………………………………….(18)
On putting \[\beta =\dfrac{-5}{3}\] in equation (15), we get
\[\begin{align}
& \Rightarrow -3-\left( \dfrac{-5}{3} \right)=\gamma \\
& \Rightarrow \dfrac{-9+5}{3}=\gamma \\
\end{align}\]
\[\Rightarrow \dfrac{-4}{3}=\gamma \] …………………………………….(19)
On putting \[\beta =\dfrac{-4}{3}\] in equation (15), we get
\[\begin{align}
& \Rightarrow -3-\left( \dfrac{-4}{3} \right)=\gamma \\
& \Rightarrow \dfrac{-9+4}{3}=\gamma \\
\end{align}\]
\[\Rightarrow \dfrac{-5}{3}=\gamma \] …………………………………….(20)
Now, equation (14), equation (18), equation (19), and equation (20), we have the value of \[\alpha ,\beta \] , and \[\gamma \] .
\[\alpha =-\dfrac{3}{2}\] , \[\beta =\dfrac{-5}{3}\] or \[\beta =\dfrac{-4}{3}\] , and \[\gamma =\dfrac{-4}{3}\] or \[\gamma =\dfrac{-5}{3}\] .
Therefore, the roots of the given cubic equation are \[\dfrac{-3}{2}\] , \[\dfrac{-4}{3}\] , and \[\dfrac{-5}{3}\] .
Note: We can also solve this question using the factorization method.
According to the question, the given cubic equation is
\[\begin{align}
& \Rightarrow 18{{x}^{3}}+81{{x}^{2}}+121x+60=0 \\
& \Rightarrow 18{{x}^{3}}+27{{x}^{2}}+54{{x}^{2}}+81x+40x+60 \\
& \Rightarrow 9{{x}^{2}}\left( 2x+3 \right)+27x\left( 2x+3 \right)+20\left( 2x+3 \right)=0 \\
& \Rightarrow \left( 2x+3 \right)\left( 9{{x}^{2}}+27x+20 \right)=0 \\
& \Rightarrow \left( 2x+3 \right)\left\{ \left( 9{{x}^{2}}+15x+12x+20 \right) \right\}=0 \\
& \Rightarrow \left( 2x+3 \right)\left\{ 3x\left( 3x+5 \right)+4\left( 3x+5 \right) \right\}=0 \\
& \Rightarrow \left( 2x+3 \right)\left( 3x+5 \right)\left( 3x+4 \right)=0 \\
\end{align}\]
Here, we have the values of x for which the value of the given cubic equation is equal to zero.
So, \[x=\dfrac{-3}{2}\] , \[x=\dfrac{-4}{3}\] , and \[x=\dfrac{-5}{3}\] .
We know the property that the roots are values of a cubic equation for which the values of the cubic equation is equal to zero.
The roots of the given cubic equation are \[\dfrac{-3}{2}\] , \[\dfrac{-4}{3}\] , and \[\dfrac{-5}{3}\] .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

