
Solution of the equation \[3\tan \left( \theta -{{15}^{\circ }} \right)=\tan \left( \theta +{{15}^{\circ }} \right)\] is
1. \[\theta =n\pi -\dfrac{\pi }{3}\]
2. \[\theta =n\pi +\dfrac{\pi }{3}\]
3. \[\theta =n\pi -\dfrac{\pi }{4}\]
4. \[\theta =\dfrac{n\pi }{2}+{{(-1)}^{n}}\dfrac{\pi }{4}\]
Answer
485.4k+ views
Hint: Here we have been given a trigonometric equation and we have to find the value of the angle in it. Firstly we will take the constant term one side and the trigonometric value on the other side. Then we will use componendo and dividendo for simplifying our terms. Finally by using the addition and subtraction formula of trigonometry we will simplify our value and get the desired answer.
Complete answer: We have to find the solution of,
\[3\tan \left( \theta -{{15}^{\circ }} \right)=\tan \left( \theta +{{15}^{\circ }} \right)\]
Taking the constant on one side and trigonometric value on another we get,
\[\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)}{\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{3}{1}\]
The componendo and dividendo formula is given as,
For any $\dfrac{a}{b}=\dfrac{c}{d}$ we can write it as $\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}$
Using above formula we get,
\[\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{3+1}{3-1}\]
\[\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{4}{2}\]
So we get,
\[\dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=2\]…..$\left( 1 \right)$
Now as we know tangent can be written in form of sine and cosine as follows,
$\tan A=\dfrac{\sin A}{\cos A}$
Using it in equation (1) we get,
\[\Rightarrow \dfrac{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)}+\dfrac{\sin \left( \theta -{{15}^{\circ }} \right)}{\cos \left( \theta -{{15}^{\circ }} \right)}}{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)}-\dfrac{\sin \left( \theta -{{15}^{\circ }} \right)}{\cos \left( \theta -{{15}^{\circ }} \right)}}=2\]
Taking L.C.M in numerator and denominator we get,
\[\Rightarrow \dfrac{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)+\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)}}{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)-\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)}}=2\]
Cancelling the common value of numerator and denominator we get,
\[\Rightarrow \dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)+\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)-\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}=2\]…..$\left( 2 \right)$
Next we know the Addition and subtraction formula for sine is as follows,
\[\sin (A+B)=\sin A\cos B+\cos A\sin B\]
\[\sin (A-B)=\sin A\cos B-\cos A\sin B\]
Using the above formula in equation (2) where $A=\theta $ and $B={{15}^{\circ }}$ we get,
\[\Rightarrow \dfrac{\sin (\theta +{{15}^{\circ }}+\theta -{{15}^{\circ }})}{\sin (\theta +{{15}^{\circ }}-\theta +{{15}^{\circ }})}=2\]
$\Rightarrow \dfrac{\sin (2\theta )}{\sin ({{30}^{\circ }})}=2$
We know that $\sin {{30}^{\circ }}=\dfrac{1}{2}$ substitute above,
$\Rightarrow \dfrac{\sin (2\theta )}{\dfrac{1}{2}}=2$
$\Rightarrow 2\sin \left( 2\theta \right)=2$
Simplifying we get,
$\Rightarrow \sin \left( 2\theta \right)=1$
We know $\sin \dfrac{\pi }{2}=1$ so we get,
$\Rightarrow \sin \left( 2\theta \right)=\sin \dfrac{\pi }{2}$
We know that general solution of above term is calculated as
$\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha $
Where $\alpha =$ Angle on the right side and $\theta =$ angle on the left side so we get,
$2\theta =n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{2}$
$\Rightarrow \theta =\dfrac{n\pi }{2}+{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$
Hence the correct answer is (4).
Note:
This type of question required very much attention as the calculation is big there is a chance of error in it. Always write each step so that we don’t get confused and don’t make any silly mistake. First step when we have cotangent or tangent function is to change them into sine and cosine function as they are easier to find. The componendo and dividendo method is used to form term whose formula is already known to us.
Complete answer: We have to find the solution of,
\[3\tan \left( \theta -{{15}^{\circ }} \right)=\tan \left( \theta +{{15}^{\circ }} \right)\]
Taking the constant on one side and trigonometric value on another we get,
\[\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)}{\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{3}{1}\]
The componendo and dividendo formula is given as,
For any $\dfrac{a}{b}=\dfrac{c}{d}$ we can write it as $\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}$
Using above formula we get,
\[\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{3+1}{3-1}\]
\[\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{4}{2}\]
So we get,
\[\dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=2\]…..$\left( 1 \right)$
Now as we know tangent can be written in form of sine and cosine as follows,
$\tan A=\dfrac{\sin A}{\cos A}$
Using it in equation (1) we get,
\[\Rightarrow \dfrac{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)}+\dfrac{\sin \left( \theta -{{15}^{\circ }} \right)}{\cos \left( \theta -{{15}^{\circ }} \right)}}{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)}-\dfrac{\sin \left( \theta -{{15}^{\circ }} \right)}{\cos \left( \theta -{{15}^{\circ }} \right)}}=2\]
Taking L.C.M in numerator and denominator we get,
\[\Rightarrow \dfrac{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)+\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)}}{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)-\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)}}=2\]
Cancelling the common value of numerator and denominator we get,
\[\Rightarrow \dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)+\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)-\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}=2\]…..$\left( 2 \right)$
Next we know the Addition and subtraction formula for sine is as follows,
\[\sin (A+B)=\sin A\cos B+\cos A\sin B\]
\[\sin (A-B)=\sin A\cos B-\cos A\sin B\]
Using the above formula in equation (2) where $A=\theta $ and $B={{15}^{\circ }}$ we get,
\[\Rightarrow \dfrac{\sin (\theta +{{15}^{\circ }}+\theta -{{15}^{\circ }})}{\sin (\theta +{{15}^{\circ }}-\theta +{{15}^{\circ }})}=2\]
$\Rightarrow \dfrac{\sin (2\theta )}{\sin ({{30}^{\circ }})}=2$
We know that $\sin {{30}^{\circ }}=\dfrac{1}{2}$ substitute above,
$\Rightarrow \dfrac{\sin (2\theta )}{\dfrac{1}{2}}=2$
$\Rightarrow 2\sin \left( 2\theta \right)=2$
Simplifying we get,
$\Rightarrow \sin \left( 2\theta \right)=1$
We know $\sin \dfrac{\pi }{2}=1$ so we get,
$\Rightarrow \sin \left( 2\theta \right)=\sin \dfrac{\pi }{2}$
We know that general solution of above term is calculated as
$\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha $
Where $\alpha =$ Angle on the right side and $\theta =$ angle on the left side so we get,
$2\theta =n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{2}$
$\Rightarrow \theta =\dfrac{n\pi }{2}+{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$
Hence the correct answer is (4).
Note:
This type of question required very much attention as the calculation is big there is a chance of error in it. Always write each step so that we don’t get confused and don’t make any silly mistake. First step when we have cotangent or tangent function is to change them into sine and cosine function as they are easier to find. The componendo and dividendo method is used to form term whose formula is already known to us.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

