
Solution of $ \left( {1 + xy} \right)ydx + \left( {1 - xy} \right)xdy = 0 $ is
A. $ \log \dfrac{x}{y} + \dfrac{1}{{xy}} = c $
B. $ \log \dfrac{x}{y} = c $
C. $ \log \dfrac{x}{y} - \dfrac{1}{{xy}} = c $
D. $ \log \dfrac{y}{x} - \dfrac{1}{{xy}} = c $
Answer
569.4k+ views
Hint: First expand the given equation by multiplying the terms inside the bracket with the term outside the bracket. After that put all the like terms together. Then find their integration using the below mentioned formulas.
Formulas used:
1. $ \int \dfrac{1}{x}dx = \log x + c $
2. $ d\left( {xy} \right) = xdy + ydx $
3. $ \int {x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c $
4. $ \log a - \log b = \log \dfrac{a}{b} $
Complete step-by-step answer:
We are given to find the solution of the equation $ \left( {1 + xy} \right)ydx + \left( {1 - xy} \right)xdy = 0 $ .
First we are multiplying the terms inside the bracket with the term outside the bracket in the left hand side of the equation.
$ \Rightarrow ydx + xy.ydx + xdy - xy.xdy = 0 $
$ \Rightarrow ydx + x{y^2}dx + xdy - {x^2}ydy = 0 $
On putting the linear terms one side and the square terms another side, we get
$ \Rightarrow ydx + xdy + x{y^2}dx - {x^2}ydy = 0 $
As we can see in the 3rd and 4th terms of the above equation, we can take out $ xy $ common
$ \Rightarrow ydx + xdy + xy\left( {ydx - xdy} \right) = 0 $
On dividing the whole equation (both LHS and RHS) by $ {x^2}{y^2} $ , we get
$ \Rightarrow \dfrac{{ydx + xdy + xy\left( {ydx - xdy} \right)}}{{{x^2}{y^2}}} = \dfrac{0}{{{x^2}{y^2}}} $
$ \Rightarrow \dfrac{{ydx + xdy + xy\left( {ydx - xdy} \right)}}{{{x^2}{y^2}}} = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{{xy\left( {ydx - xdy} \right)}}{{{x^2}{y^2}}} = 0 $
$ {x^2}{y^2} $ can also be written as $ {\left( {xy} \right)^2} $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{{xy\left( {ydx - xdy} \right)}}{{{{\left( {xy} \right)}^2}}} = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{{xy}}{{{{\left( {xy} \right)}^2}}}\left( {ydx - xdy} \right) = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{1}{{xy}}\left( {ydx - xdy} \right) = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \left( {\dfrac{{ydx}}{{xy}} - \dfrac{{xdy}}{{xy}}} \right) = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{{\left( {xy} \right)}^2}}} + \left( {\dfrac{1}{x}dx - \dfrac{1}{y}dy} \right) = 0 $ …… equation (1)
Let us consider $ xy $ as t, $ xy = t $
On differentiating both sides with respect to t, we get
$ \Rightarrow \dfrac{d}{{dt}}\left( {xy} \right) = \dfrac{{dt}}{{dt}} $
$ \Rightarrow x\dfrac{{dy}}{{dt}} + y\dfrac{{dx}}{{dt}} = 1 $
$ \Rightarrow xdy + ydx = dt $
On substituting t in the place of $ xy $ and $ dt $ in the place of $ xdy + ydx $ in equation 1, we get
$ \Rightarrow \dfrac{{dt}}{{{{\left( t \right)}^2}}} + \left( {\dfrac{1}{x}dx - \dfrac{1}{y}dy} \right) = 0 $
Now we are integrating the above equation
$ \Rightarrow \int \left[ {\dfrac{{dt}}{{{{\left( t \right)}^2}}} + \left( {\dfrac{1}{x}dx - \dfrac{1}{y}dy} \right)} \right] = 0 $
$ \Rightarrow \int \dfrac{{dt}}{{{{\left( t \right)}^2}}} + \int \dfrac{1}{x}dx - \int \dfrac{1}{y}dy = 0 $
$ \Rightarrow \int {\left( t \right)^{ - 2}}dt + \int \dfrac{1}{x}dx - \int \dfrac{1}{y}dy = 0 $
We already know that $ \int {x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c $ , here x is t and n is -2
This gives, $ \Rightarrow \dfrac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}} + \int \dfrac{1}{x}dx - \int \dfrac{1}{y}dy = 0 $
And the value of $ \int \dfrac{1}{x}dx = \log x + c $
$ \Rightarrow \dfrac{{{t^{ - 1}}}}{{ - 1}} + c + \log x + c - \left( {\log y + c} \right) = 0 $
$ \Rightarrow - \dfrac{1}{t} + c + \log x + c - \log y - c = 0 $
$ \Rightarrow - \dfrac{1}{t} + \log x - \log y = c $
Substituting t as $ xy $ and the value of $ \log a - \log b = \log \dfrac{a}{b} $
This gives
$ \Rightarrow - \dfrac{1}{{xy}} + \log \dfrac{x}{y} = c $
$ \Rightarrow \log \dfrac{x}{y} - \dfrac{1}{{xy}} = c $
Therefore, the solution of $ \left( {1 + xy} \right)ydx + \left( {1 - xy} \right)xdy = 0 $ is $ \log \dfrac{x}{y} - \dfrac{1}{{xy}} = c $
Hence, the correct option is Option C.
So, the correct answer is “Option C”.
Note: The variable ‘c’ we get after integrating an expression is a constant, so if we add another constant to it then the result will also be a constant. So do not worry about its sign and coefficient. Be careful with the results of differentiation and integration as they both are inverse to each other.
Formulas used:
1. $ \int \dfrac{1}{x}dx = \log x + c $
2. $ d\left( {xy} \right) = xdy + ydx $
3. $ \int {x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c $
4. $ \log a - \log b = \log \dfrac{a}{b} $
Complete step-by-step answer:
We are given to find the solution of the equation $ \left( {1 + xy} \right)ydx + \left( {1 - xy} \right)xdy = 0 $ .
First we are multiplying the terms inside the bracket with the term outside the bracket in the left hand side of the equation.
$ \Rightarrow ydx + xy.ydx + xdy - xy.xdy = 0 $
$ \Rightarrow ydx + x{y^2}dx + xdy - {x^2}ydy = 0 $
On putting the linear terms one side and the square terms another side, we get
$ \Rightarrow ydx + xdy + x{y^2}dx - {x^2}ydy = 0 $
As we can see in the 3rd and 4th terms of the above equation, we can take out $ xy $ common
$ \Rightarrow ydx + xdy + xy\left( {ydx - xdy} \right) = 0 $
On dividing the whole equation (both LHS and RHS) by $ {x^2}{y^2} $ , we get
$ \Rightarrow \dfrac{{ydx + xdy + xy\left( {ydx - xdy} \right)}}{{{x^2}{y^2}}} = \dfrac{0}{{{x^2}{y^2}}} $
$ \Rightarrow \dfrac{{ydx + xdy + xy\left( {ydx - xdy} \right)}}{{{x^2}{y^2}}} = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{{xy\left( {ydx - xdy} \right)}}{{{x^2}{y^2}}} = 0 $
$ {x^2}{y^2} $ can also be written as $ {\left( {xy} \right)^2} $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{{xy\left( {ydx - xdy} \right)}}{{{{\left( {xy} \right)}^2}}} = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{{xy}}{{{{\left( {xy} \right)}^2}}}\left( {ydx - xdy} \right) = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \dfrac{1}{{xy}}\left( {ydx - xdy} \right) = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{x^2}{y^2}}} + \left( {\dfrac{{ydx}}{{xy}} - \dfrac{{xdy}}{{xy}}} \right) = 0 $
$ \Rightarrow \dfrac{{ydx + xdy}}{{{{\left( {xy} \right)}^2}}} + \left( {\dfrac{1}{x}dx - \dfrac{1}{y}dy} \right) = 0 $ …… equation (1)
Let us consider $ xy $ as t, $ xy = t $
On differentiating both sides with respect to t, we get
$ \Rightarrow \dfrac{d}{{dt}}\left( {xy} \right) = \dfrac{{dt}}{{dt}} $
$ \Rightarrow x\dfrac{{dy}}{{dt}} + y\dfrac{{dx}}{{dt}} = 1 $
$ \Rightarrow xdy + ydx = dt $
On substituting t in the place of $ xy $ and $ dt $ in the place of $ xdy + ydx $ in equation 1, we get
$ \Rightarrow \dfrac{{dt}}{{{{\left( t \right)}^2}}} + \left( {\dfrac{1}{x}dx - \dfrac{1}{y}dy} \right) = 0 $
Now we are integrating the above equation
$ \Rightarrow \int \left[ {\dfrac{{dt}}{{{{\left( t \right)}^2}}} + \left( {\dfrac{1}{x}dx - \dfrac{1}{y}dy} \right)} \right] = 0 $
$ \Rightarrow \int \dfrac{{dt}}{{{{\left( t \right)}^2}}} + \int \dfrac{1}{x}dx - \int \dfrac{1}{y}dy = 0 $
$ \Rightarrow \int {\left( t \right)^{ - 2}}dt + \int \dfrac{1}{x}dx - \int \dfrac{1}{y}dy = 0 $
We already know that $ \int {x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c $ , here x is t and n is -2
This gives, $ \Rightarrow \dfrac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}} + \int \dfrac{1}{x}dx - \int \dfrac{1}{y}dy = 0 $
And the value of $ \int \dfrac{1}{x}dx = \log x + c $
$ \Rightarrow \dfrac{{{t^{ - 1}}}}{{ - 1}} + c + \log x + c - \left( {\log y + c} \right) = 0 $
$ \Rightarrow - \dfrac{1}{t} + c + \log x + c - \log y - c = 0 $
$ \Rightarrow - \dfrac{1}{t} + \log x - \log y = c $
Substituting t as $ xy $ and the value of $ \log a - \log b = \log \dfrac{a}{b} $
This gives
$ \Rightarrow - \dfrac{1}{{xy}} + \log \dfrac{x}{y} = c $
$ \Rightarrow \log \dfrac{x}{y} - \dfrac{1}{{xy}} = c $
Therefore, the solution of $ \left( {1 + xy} \right)ydx + \left( {1 - xy} \right)xdy = 0 $ is $ \log \dfrac{x}{y} - \dfrac{1}{{xy}} = c $
Hence, the correct option is Option C.
So, the correct answer is “Option C”.
Note: The variable ‘c’ we get after integrating an expression is a constant, so if we add another constant to it then the result will also be a constant. So do not worry about its sign and coefficient. Be careful with the results of differentiation and integration as they both are inverse to each other.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

