
Solubility of calcium phosphate (molecular mass, M) in water is W g per $100$mL at ${\text{2}}{{\text{5}}^{\text{o}}}{\text{C}}$. Its solubility product at ${\text{2}}{{\text{5}}^{\text{o}}}{\text{C}}$ will be approximately:
A. ${\text{1}}{{\text{0}}^{\text{9}}}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$
B. ${\text{1}}{{\text{0}}^{\text{7}}}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$
C. ${\text{1}}{{\text{0}}^5}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$
D. ${\text{1}}{{\text{0}}^3}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$
Answer
551.4k+ views
Hint: ${{\text{K}}_{{\text{sp}}}}$ represents the solubility product constant at equilibrium. When a solid substance dissolves into water it dissociates into ion. The product of solubilities of the ions with the number of each ion in power is known as the solubility product. First we will determine the molarity and then the equilibrium constant.
Complete solution:
The solubility product constant represents the product of concentrations of constituting ions of an ionic compound at equilibrium each raised number of ions as power.
An ionic compound dissociates into the water as follows:
${{\text{A}}_{\text{x}}}{{\text{B}}_{\text{y}}}\, \rightleftarrows \,\,{\text{x}}{{\text{A}}^{{\text{ + Y}}}}\,{\text{ + }}\,{\text{y}}{{\text{B}}^{ - x}}$
Where,
${\text{AB}}$ is an ionic compound.
The general representation for the solubility product of an ionic compound is as follows:
\[{{\text{K}}_{{\text{sp}}}}\,{\text{ = }}\,{\left( {{\text{x}}{{\text{A}}^{{\text{ + y}}}}\,} \right)^{\text{x}}}\, \times \,\,{\left( {{\text{y}}{{\text{A}}^{ - x}}\,} \right)^{\text{y}}}\]
${{\text{K}}_{{\text{sp}}}}\,{\text{ = }}\,{\text{x}}{{\text{S}}^{\text{x}}}\,{ \times }\,{\text{y}}{{\text{S}}^{\text{y}}}$
Where,
${{\text{K}}_{{\text{sp}}}}$is the solubility product constant.
${\text{S}}$is the solubility of each ion.
$x$ and $y$ represents the number of ions.
The compound calcium phosphate dissociates into the water as follows:
${\text{C}}{{\text{a}}_3}{{\text{(P}}{{\text{O}}_4})_2} \rightleftarrows \,\,3\,{\text{C}}{{\text{a}}^{{\text{2 + }}}}{\text{ + }}\,\,2{\text{PO}}_4^{3 - }$
The solubility product for calcium phosphate is represented as follows:
${{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {{\text{3}}\,{\text{C}}{{\text{a}}^{{\text{2 + }}}}} \right]^3}{\left[ {{\text{2PO}}_4^{3 - }} \right]^2}$
${{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {{\text{3}}\,{\text{S}}} \right]^3}{\left[ {{\text{2S}}} \right]^2}$……$(1)$
Solubility tells the concentration of compounds in solution. Here, we take the solubility in units of molarity.
The formula of molarity is as follows:
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{mole}}\,{\text{of solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}}}$
The formula of mole is as follows:
${\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}\,{\text{(W)}}}}{{{\text{molar}}\,{\text{mass (M)}}}}$
On substituting the mole in molarity formula we get,
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}\,\,{\text{(L)}}}}$
Here, we take the volume in litre.
We will multiply the molarity formula with $1000$ to convert the volume in mL as follows:
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution(mL)}}}} \times 1000$
The given volume of the solution is $100$mL . So,
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{{\text{100}}}} \times 1000$
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{\text{1}}} \times 10$
We can write the molarity for ${\text{C}}{{\text{a}}^{{\text{2 + }}}}$ ions as,
${\text{C}}{{\text{a}}^{2 + }}\,{\text{ = }}\,\dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}$……$(2)$
We can write the molarity for ${\text{PO}}_4^{3 - }$ ions as,
${\text{PO}}_4^{3 - }\,{\text{ = }}\,\dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}$……$(3)$
Now, we will substitute the molarities of ${\text{C}}{{\text{a}}^{{\text{2 + }}}}$ and ${\text{PO}}_4^{3 - }$ ions from equation $(2)$ and$(3)$ in equation $(1)$,
${{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {{\text{3}}\, \times \dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}} \right]^3}{\left[ {{\text{2}} \times \dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}} \right]^2}\,$
\[{{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {\dfrac{{3 \times \,\,{\text{10}}}}{{1\,}}} \right]^3}{\left[ {\dfrac{{2 \times \,\,{\text{10}}}}{{1\,}}} \right]^2}\,{\left( {\dfrac{{\text{W}}}{{{\text{M}}\,}}} \right)^5}\]
\[{{\text{K}}_{{\text{sp}}}}\, = \,\,108{\text{00000}}\,\,{\left( {\dfrac{{\text{W}}}{{{\text{M}}\,}}} \right)^5}\]
We can assume that \[108{\text{00000}}\, \approx \,100{\text{00000}}\]
\[{{\text{K}}_{{\text{sp}}}}\, = \,\,{10^7}\,\,{\left( {\dfrac{{\text{W}}}{{{\text{M}}\,}}} \right)^5}\]
So, the solubility product of calcium phosphate at ${\text{2}}{{\text{5}}^{\text{o}}}{\text{C}}$ will be ${\text{1}}{{\text{0}}^{\text{7}}}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$ approximately.
Therefore, option (B), ${\text{1}}{{\text{0}}^{\text{7}}}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$ is correct.
Note:By the addition of atomic mass the molar mass is determined. Solubility tells the concentration of solid compounds dissolved in water. Concentration in the determination of solubility products is taken in terms of molarity. The formula of solubility product constant depends upon the number of ions produced by the ionic compounds in the water. Molar solubility represents the number of ions dissolved per liter of solution. Here, solubility represents the number of ions dissolved in a given amount of solvent.
Complete solution:
The solubility product constant represents the product of concentrations of constituting ions of an ionic compound at equilibrium each raised number of ions as power.
An ionic compound dissociates into the water as follows:
${{\text{A}}_{\text{x}}}{{\text{B}}_{\text{y}}}\, \rightleftarrows \,\,{\text{x}}{{\text{A}}^{{\text{ + Y}}}}\,{\text{ + }}\,{\text{y}}{{\text{B}}^{ - x}}$
Where,
${\text{AB}}$ is an ionic compound.
The general representation for the solubility product of an ionic compound is as follows:
\[{{\text{K}}_{{\text{sp}}}}\,{\text{ = }}\,{\left( {{\text{x}}{{\text{A}}^{{\text{ + y}}}}\,} \right)^{\text{x}}}\, \times \,\,{\left( {{\text{y}}{{\text{A}}^{ - x}}\,} \right)^{\text{y}}}\]
${{\text{K}}_{{\text{sp}}}}\,{\text{ = }}\,{\text{x}}{{\text{S}}^{\text{x}}}\,{ \times }\,{\text{y}}{{\text{S}}^{\text{y}}}$
Where,
${{\text{K}}_{{\text{sp}}}}$is the solubility product constant.
${\text{S}}$is the solubility of each ion.
$x$ and $y$ represents the number of ions.
The compound calcium phosphate dissociates into the water as follows:
${\text{C}}{{\text{a}}_3}{{\text{(P}}{{\text{O}}_4})_2} \rightleftarrows \,\,3\,{\text{C}}{{\text{a}}^{{\text{2 + }}}}{\text{ + }}\,\,2{\text{PO}}_4^{3 - }$
The solubility product for calcium phosphate is represented as follows:
${{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {{\text{3}}\,{\text{C}}{{\text{a}}^{{\text{2 + }}}}} \right]^3}{\left[ {{\text{2PO}}_4^{3 - }} \right]^2}$
${{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {{\text{3}}\,{\text{S}}} \right]^3}{\left[ {{\text{2S}}} \right]^2}$……$(1)$
Solubility tells the concentration of compounds in solution. Here, we take the solubility in units of molarity.
The formula of molarity is as follows:
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{mole}}\,{\text{of solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}}}$
The formula of mole is as follows:
${\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}\,{\text{(W)}}}}{{{\text{molar}}\,{\text{mass (M)}}}}$
On substituting the mole in molarity formula we get,
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}\,\,{\text{(L)}}}}$
Here, we take the volume in litre.
We will multiply the molarity formula with $1000$ to convert the volume in mL as follows:
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution(mL)}}}} \times 1000$
The given volume of the solution is $100$mL . So,
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{{\text{100}}}} \times 1000$
${\text{molarity}}\,{\text{ = }}\,\dfrac{{{\text{W/M}}\,\,{\text{of solute}}}}{{\text{1}}} \times 10$
We can write the molarity for ${\text{C}}{{\text{a}}^{{\text{2 + }}}}$ ions as,
${\text{C}}{{\text{a}}^{2 + }}\,{\text{ = }}\,\dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}$……$(2)$
We can write the molarity for ${\text{PO}}_4^{3 - }$ ions as,
${\text{PO}}_4^{3 - }\,{\text{ = }}\,\dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}$……$(3)$
Now, we will substitute the molarities of ${\text{C}}{{\text{a}}^{{\text{2 + }}}}$ and ${\text{PO}}_4^{3 - }$ ions from equation $(2)$ and$(3)$ in equation $(1)$,
${{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {{\text{3}}\, \times \dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}} \right]^3}{\left[ {{\text{2}} \times \dfrac{{{\text{W}} \times \,\,{\text{10}}}}{{{\text{M}}\,}}} \right]^2}\,$
\[{{\text{K}}_{{\text{sp}}}}\, = \,\,{\left[ {\dfrac{{3 \times \,\,{\text{10}}}}{{1\,}}} \right]^3}{\left[ {\dfrac{{2 \times \,\,{\text{10}}}}{{1\,}}} \right]^2}\,{\left( {\dfrac{{\text{W}}}{{{\text{M}}\,}}} \right)^5}\]
\[{{\text{K}}_{{\text{sp}}}}\, = \,\,108{\text{00000}}\,\,{\left( {\dfrac{{\text{W}}}{{{\text{M}}\,}}} \right)^5}\]
We can assume that \[108{\text{00000}}\, \approx \,100{\text{00000}}\]
\[{{\text{K}}_{{\text{sp}}}}\, = \,\,{10^7}\,\,{\left( {\dfrac{{\text{W}}}{{{\text{M}}\,}}} \right)^5}\]
So, the solubility product of calcium phosphate at ${\text{2}}{{\text{5}}^{\text{o}}}{\text{C}}$ will be ${\text{1}}{{\text{0}}^{\text{7}}}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$ approximately.
Therefore, option (B), ${\text{1}}{{\text{0}}^{\text{7}}}{\left( {\dfrac{{\text{W}}}{{\text{M}}}} \right)^{\text{5}}}$ is correct.
Note:By the addition of atomic mass the molar mass is determined. Solubility tells the concentration of solid compounds dissolved in water. Concentration in the determination of solubility products is taken in terms of molarity. The formula of solubility product constant depends upon the number of ions produced by the ionic compounds in the water. Molar solubility represents the number of ions dissolved per liter of solution. Here, solubility represents the number of ions dissolved in a given amount of solvent.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

