
Sine function whose period is 6 is
A) $\sin \dfrac{{2\pi x}}{3}$
B) $\sin \dfrac{{\pi x}}{3}$
C) $\sin \dfrac{{\pi x}}{6}$
D) $\sin \dfrac{{3\pi x}}{2}$
Answer
561.6k+ views
Hint:
We can assume that $f\left( x \right) = \sin kx$ is the required function. Then we can find its period in terms of k. Then we can equate the period to 6 and solve for k. We can substitute the value of k in the function to get the required function.
Complete step by step solution:
Let us assume $f\left( x \right)$ to be the required function. As it is a sin function, we can write it as,
$f\left( x \right) = \sin kx$
We know that all trigonometric functions have a period of $2\pi $
So, the given function has a period of $\dfrac{{2\pi }}{k}$
We are given that the function has a period of 6. So, we can equate the period of the function to 6 and find the value of k.
$ \Rightarrow \dfrac{{2\pi }}{k} = 6$
On cross multiplying, we get
$ \Rightarrow k = \dfrac{{2\pi }}{6}$
On cancelling the common terms, we get
$ \Rightarrow k = \dfrac{\pi }{3}$
On substituting the value of k in the function, we get
$f\left( x \right) = \sin \dfrac{{\pi x}}{3}$
Therefore, the required function with period 6 is $\sin \dfrac{{\pi x}}{3}$
So, the correct answer is option B.
Note:
Alternatively, we are given that the period of the function is 6.
$ \Rightarrow f\left( x \right) = f\left( {6 + x} \right)$
Now we can check through the options.
So, option A will become,
$f\left( {6 + x} \right) = \sin \dfrac{{2\pi \left( {6 + x} \right)}}{3}$
On expanding the brackets, we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{2\pi \times 6}}{3} + \dfrac{{2\pi x}}{3}} \right)$
On simplification we have,
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {4\pi + \dfrac{{2\pi x}}{3}} \right)$
This cannot be the answer as the function will have period 6 after it completes 2 cycles.
Now check option B.
\[f\left( x \right) = \sin \left( {\dfrac{{\pi x}}{3}} \right)\]
$ \Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{\pi \left( {6 + x} \right)}}{3}$
On expanding the brackets, we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi \times 6}}{3} + \dfrac{{\pi x}}{3}} \right)$
On simplification we have,
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {2\pi + \dfrac{{\pi x}}{3}} \right)$
We know that the trigonometric functions have a period of $2\pi $
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi x}}{3}} \right)$
$ \Rightarrow f\left( {6 + x} \right) = f\left( x \right)$
Now check option C.
\[f\left( x \right) = \sin \left( {\dfrac{{\pi x}}{6}} \right)\]
$ \Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{\pi \left( {6 + x} \right)}}{6}$
On expanding the brackets, we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi \times 6}}{6} + \dfrac{{\pi x}}{6}} \right)$
On simplification we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\pi + \dfrac{{\pi x}}{6}} \right)$
But the trigonometric functions have a period of $2\pi $
$ \Rightarrow \sin \left( {\pi + \dfrac{{\pi x}}{6}} \right) \ne \sin \left( {\dfrac{{\pi x}}{6}} \right)$
$ \Rightarrow f\left( {6 + x} \right) \ne f\left( x \right)$
So, option C is not a solution.
Now we can consider option D.
\[f\left( x \right) = \sin \left( {\dfrac{{3\pi x}}{2}} \right)\]
$ \Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{3\pi \left( {6 + x} \right)}}{2}$
On expanding the brackets, we get
\[ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{3\pi \times 6}}{2} + \dfrac{{3\pi x}}{2}} \right)\]
On simplification we get,
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {9\pi + \dfrac{{\pi x}}{6}} \right)$
But the trigonometric functions have a period of $2\pi $
$ \Rightarrow \sin \left( {9\pi + \dfrac{{2\pi x}}{3}} \right) \ne \sin \left( {\dfrac{{2\pi x}}{3}} \right)$
$ \Rightarrow f\left( {6 + x} \right) \ne f\left( x \right)$
So, option D is not a solution.
We can assume that $f\left( x \right) = \sin kx$ is the required function. Then we can find its period in terms of k. Then we can equate the period to 6 and solve for k. We can substitute the value of k in the function to get the required function.
Complete step by step solution:
Let us assume $f\left( x \right)$ to be the required function. As it is a sin function, we can write it as,
$f\left( x \right) = \sin kx$
We know that all trigonometric functions have a period of $2\pi $
So, the given function has a period of $\dfrac{{2\pi }}{k}$
We are given that the function has a period of 6. So, we can equate the period of the function to 6 and find the value of k.
$ \Rightarrow \dfrac{{2\pi }}{k} = 6$
On cross multiplying, we get
$ \Rightarrow k = \dfrac{{2\pi }}{6}$
On cancelling the common terms, we get
$ \Rightarrow k = \dfrac{\pi }{3}$
On substituting the value of k in the function, we get
$f\left( x \right) = \sin \dfrac{{\pi x}}{3}$
Therefore, the required function with period 6 is $\sin \dfrac{{\pi x}}{3}$
So, the correct answer is option B.
Note:
Alternatively, we are given that the period of the function is 6.
$ \Rightarrow f\left( x \right) = f\left( {6 + x} \right)$
Now we can check through the options.
So, option A will become,
$f\left( {6 + x} \right) = \sin \dfrac{{2\pi \left( {6 + x} \right)}}{3}$
On expanding the brackets, we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{2\pi \times 6}}{3} + \dfrac{{2\pi x}}{3}} \right)$
On simplification we have,
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {4\pi + \dfrac{{2\pi x}}{3}} \right)$
This cannot be the answer as the function will have period 6 after it completes 2 cycles.
Now check option B.
\[f\left( x \right) = \sin \left( {\dfrac{{\pi x}}{3}} \right)\]
$ \Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{\pi \left( {6 + x} \right)}}{3}$
On expanding the brackets, we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi \times 6}}{3} + \dfrac{{\pi x}}{3}} \right)$
On simplification we have,
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {2\pi + \dfrac{{\pi x}}{3}} \right)$
We know that the trigonometric functions have a period of $2\pi $
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi x}}{3}} \right)$
$ \Rightarrow f\left( {6 + x} \right) = f\left( x \right)$
Now check option C.
\[f\left( x \right) = \sin \left( {\dfrac{{\pi x}}{6}} \right)\]
$ \Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{\pi \left( {6 + x} \right)}}{6}$
On expanding the brackets, we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi \times 6}}{6} + \dfrac{{\pi x}}{6}} \right)$
On simplification we get
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\pi + \dfrac{{\pi x}}{6}} \right)$
But the trigonometric functions have a period of $2\pi $
$ \Rightarrow \sin \left( {\pi + \dfrac{{\pi x}}{6}} \right) \ne \sin \left( {\dfrac{{\pi x}}{6}} \right)$
$ \Rightarrow f\left( {6 + x} \right) \ne f\left( x \right)$
So, option C is not a solution.
Now we can consider option D.
\[f\left( x \right) = \sin \left( {\dfrac{{3\pi x}}{2}} \right)\]
$ \Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{3\pi \left( {6 + x} \right)}}{2}$
On expanding the brackets, we get
\[ \Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{3\pi \times 6}}{2} + \dfrac{{3\pi x}}{2}} \right)\]
On simplification we get,
$ \Rightarrow f\left( {6 + x} \right) = \sin \left( {9\pi + \dfrac{{\pi x}}{6}} \right)$
But the trigonometric functions have a period of $2\pi $
$ \Rightarrow \sin \left( {9\pi + \dfrac{{2\pi x}}{3}} \right) \ne \sin \left( {\dfrac{{2\pi x}}{3}} \right)$
$ \Rightarrow f\left( {6 + x} \right) \ne f\left( x \right)$
So, option D is not a solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

