
What is the sine, cosine and tangent of 270 degrees?
Answer
516.9k+ views
Hint: Express ${{270}^{\circ }}\text{ into }\left( {{270}^{\circ }}+\theta \right)$ . Then we should use the following two identities for sin and cosine respectively, $\sin \left( {{270}^{\circ }}+\theta \right)=-\cos \theta \text{ and }\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $ . To find the tangent, we must remember that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ . In case the value of tangent is undefined, verify using the graph of $y=\tan \theta \text{ at }\theta ={{270}^{\circ }}$ to check whether it is $+\infty \text{ or }-\infty $ .
Complete step by step solution:
For sine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\sin \left( {{270}^{\circ }} \right)=\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( i \right)$
We know the trigonometric identity $\sin \left( {{270}^{\circ }}+\theta \right)=-\cos \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\cos {{0}^{\circ }}=1$ , we get
$\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=-\cos {{0}^{\circ }}=-1...\left( ii \right)$
Now substituting the value of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (i), we get
$\sin \left( {{270}^{\circ }} \right)=-1$
Hence, the sine of 270 degrees is -1.
For cosine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\cos \left( {{270}^{\circ }} \right)=\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( iii \right)$
We know the trigonometric identity $\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\sin {{0}^{\circ }}=0$ , we get
$\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\sin {{0}^{\circ }}=0...\left( iv \right)$
Now substituting the value of $\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (iii), we get
$\cos \left( {{270}^{\circ }} \right)=0$
Hence, the cosine of 270 degrees is 0.
For tangent of 270 degrees:
We are well aware of the identity that
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Thus, we can write
$\tan {{270}^{\circ }}=\dfrac{\sin {{270}^{\circ }}}{\cos {{270}^{\circ }}}$
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}{\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}$
We can now substitute the values of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)\text{ and }\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ from equation (ii) and equation (iv) respectively. Thus, we have,
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{-1}{0}$ , which is N.D. or undefined.
Now, to check whether the value is $+\infty \text{ or }-\infty $ , we should use the graph of $y=\tan \left( x \right)\text{ at }x={{270}^{\circ }}$
From this graph, we can clearly see that $y=\tan \left( x \right)\text{ approaches }+\infty \text{ at }x={{270}^{\circ }}$ .
\[\therefore \tan \left( {{270}^{\circ }} \right)=+\infty \]
Hence, the tangent of 270 degrees is positive infinity.
Note: We can express 270 degrees into multiple forms, such as, $\left( {{270}^{\circ }}+{{0}^{\circ }} \right),\left( {{180}^{\circ }}+{{90}^{\circ }} \right)\text{ or }\left( {{360}^{\circ }}-{{90}^{\circ }} \right)$ . All of these forms could be used separately to find the trigonometric values of ${{270}^{\circ }}$ . We should remember not to assume $\left( \dfrac{-1}{0} \right)\text{ as -}\infty $ when we are trying to find the tangent of ${{270}^{\circ }}$.
Complete step by step solution:
For sine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\sin \left( {{270}^{\circ }} \right)=\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( i \right)$
We know the trigonometric identity $\sin \left( {{270}^{\circ }}+\theta \right)=-\cos \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\cos {{0}^{\circ }}=1$ , we get
$\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=-\cos {{0}^{\circ }}=-1...\left( ii \right)$
Now substituting the value of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (i), we get
$\sin \left( {{270}^{\circ }} \right)=-1$
Hence, the sine of 270 degrees is -1.
For cosine of 270 degrees:
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\cos \left( {{270}^{\circ }} \right)=\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)...\left( iii \right)$
We know the trigonometric identity $\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $.
If we put $\theta ={{0}^{\circ }}$ and keep in mind the fact that $\sin {{0}^{\circ }}=0$ , we get
$\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\sin {{0}^{\circ }}=0...\left( iv \right)$
Now substituting the value of $\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ in equation (iii), we get
$\cos \left( {{270}^{\circ }} \right)=0$
Hence, the cosine of 270 degrees is 0.
For tangent of 270 degrees:
We are well aware of the identity that
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Thus, we can write
$\tan {{270}^{\circ }}=\dfrac{\sin {{270}^{\circ }}}{\cos {{270}^{\circ }}}$
We can write ${{270}^{\circ }}\text{ as }\left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ . Or, in equation form
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}{\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)}$
We can now substitute the values of $\sin \left( {{270}^{\circ }}+{{0}^{\circ }} \right)\text{ and }\cos \left( {{270}^{\circ }}+{{0}^{\circ }} \right)$ from equation (ii) and equation (iv) respectively. Thus, we have,
$\tan \left( {{270}^{\circ }}+{{0}^{\circ }} \right)=\dfrac{-1}{0}$ , which is N.D. or undefined.
Now, to check whether the value is $+\infty \text{ or }-\infty $ , we should use the graph of $y=\tan \left( x \right)\text{ at }x={{270}^{\circ }}$
From this graph, we can clearly see that $y=\tan \left( x \right)\text{ approaches }+\infty \text{ at }x={{270}^{\circ }}$ .
\[\therefore \tan \left( {{270}^{\circ }} \right)=+\infty \]
Hence, the tangent of 270 degrees is positive infinity.
Note: We can express 270 degrees into multiple forms, such as, $\left( {{270}^{\circ }}+{{0}^{\circ }} \right),\left( {{180}^{\circ }}+{{90}^{\circ }} \right)\text{ or }\left( {{360}^{\circ }}-{{90}^{\circ }} \right)$ . All of these forms could be used separately to find the trigonometric values of ${{270}^{\circ }}$ . We should remember not to assume $\left( \dfrac{-1}{0} \right)\text{ as -}\infty $ when we are trying to find the tangent of ${{270}^{\circ }}$.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

