
${\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ .... + {\text{si}}{{\text{n}}^2}85^\circ + {\text{si}}{{\text{n}}^2}90^\circ = 9\dfrac{1}{2}$
Answer
576.6k+ views
Hint: In order to prove this we use the trigonometric identities ${\text{sin}}\left( {90 - \theta } \right) = {\text{cos}}\theta $and ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$ to rearrange the terms and solve.
Complete step-by-step answer:
We consider the LHS and convert into RHS
We have, the LHS is
${\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ .... + {\text{si}}{{\text{n}}^2}85^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
We use the LHS and try to express it as RHS to prove the given.
We know that from the identity of sine and cos function,
${\text{sin}}\left( {90 - \theta } \right) = {\text{cos}}\theta $.
Squaring on both sides, we get
So ${\text{si}}{{\text{n}}^2}\left( {90 - \theta } \right) = {\text{co}}{{\text{s}}^2}\theta $
Now we use the above identity to express the LHS of the given as follows:
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{si}}{{\text{n}}^2}\left( {90 - 15} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 10} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 5} \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{co}}{{\text{s}}^2}\left( {15} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( {10} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( 5 \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
Each term after 45° of angle in sin function, is expressed as a difference of 90° and its complementary angle as shown.
Also we know the identity, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
So we rearrange the terms in the given equation we get 8 cases of ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{co}}{{\text{s}}^2}5^\circ + {\text{si}}{{\text{n}}^2}15^\circ + {\text{co}}{{\text{s}}^2}15^\circ + ...........{\text{si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
$
\Rightarrow 8{\text{ + si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ \\
\Rightarrow 8 + \dfrac{1}{2} + 1 \\
\Rightarrow 9\dfrac{1}{2} \\
$
Hence LHS = RHS, hence proved.
Note: In order to solve problems of this type the key is to pick the appropriate identity such that when applied makes the equation the way we want it. Having adequate knowledge in trigonometric identities and trigonometric table of sine, is required.
Complete step-by-step answer:
We consider the LHS and convert into RHS
We have, the LHS is
${\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ .... + {\text{si}}{{\text{n}}^2}85^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
We use the LHS and try to express it as RHS to prove the given.
We know that from the identity of sine and cos function,
${\text{sin}}\left( {90 - \theta } \right) = {\text{cos}}\theta $.
Squaring on both sides, we get
So ${\text{si}}{{\text{n}}^2}\left( {90 - \theta } \right) = {\text{co}}{{\text{s}}^2}\theta $
Now we use the above identity to express the LHS of the given as follows:
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{si}}{{\text{n}}^2}\left( {90 - 15} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 10} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 5} \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{co}}{{\text{s}}^2}\left( {15} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( {10} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( 5 \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
Each term after 45° of angle in sin function, is expressed as a difference of 90° and its complementary angle as shown.
Also we know the identity, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
So we rearrange the terms in the given equation we get 8 cases of ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{co}}{{\text{s}}^2}5^\circ + {\text{si}}{{\text{n}}^2}15^\circ + {\text{co}}{{\text{s}}^2}15^\circ + ...........{\text{si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
$
\Rightarrow 8{\text{ + si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ \\
\Rightarrow 8 + \dfrac{1}{2} + 1 \\
\Rightarrow 9\dfrac{1}{2} \\
$
Hence LHS = RHS, hence proved.
Note: In order to solve problems of this type the key is to pick the appropriate identity such that when applied makes the equation the way we want it. Having adequate knowledge in trigonometric identities and trigonometric table of sine, is required.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

