
${\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ .... + {\text{si}}{{\text{n}}^2}85^\circ + {\text{si}}{{\text{n}}^2}90^\circ = 9\dfrac{1}{2}$
Answer
507.3k+ views
Hint: In order to prove this we use the trigonometric identities ${\text{sin}}\left( {90 - \theta } \right) = {\text{cos}}\theta $and ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$ to rearrange the terms and solve.
Complete step-by-step answer:
We consider the LHS and convert into RHS
We have, the LHS is
${\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ .... + {\text{si}}{{\text{n}}^2}85^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
We use the LHS and try to express it as RHS to prove the given.
We know that from the identity of sine and cos function,
${\text{sin}}\left( {90 - \theta } \right) = {\text{cos}}\theta $.
Squaring on both sides, we get
So ${\text{si}}{{\text{n}}^2}\left( {90 - \theta } \right) = {\text{co}}{{\text{s}}^2}\theta $
Now we use the above identity to express the LHS of the given as follows:
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{si}}{{\text{n}}^2}\left( {90 - 15} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 10} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 5} \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{co}}{{\text{s}}^2}\left( {15} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( {10} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( 5 \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
Each term after 45° of angle in sin function, is expressed as a difference of 90° and its complementary angle as shown.
Also we know the identity, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
So we rearrange the terms in the given equation we get 8 cases of ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{co}}{{\text{s}}^2}5^\circ + {\text{si}}{{\text{n}}^2}15^\circ + {\text{co}}{{\text{s}}^2}15^\circ + ...........{\text{si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
$
\Rightarrow 8{\text{ + si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ \\
\Rightarrow 8 + \dfrac{1}{2} + 1 \\
\Rightarrow 9\dfrac{1}{2} \\
$
Hence LHS = RHS, hence proved.
Note: In order to solve problems of this type the key is to pick the appropriate identity such that when applied makes the equation the way we want it. Having adequate knowledge in trigonometric identities and trigonometric table of sine, is required.
Complete step-by-step answer:
We consider the LHS and convert into RHS
We have, the LHS is
${\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ .... + {\text{si}}{{\text{n}}^2}85^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
We use the LHS and try to express it as RHS to prove the given.
We know that from the identity of sine and cos function,
${\text{sin}}\left( {90 - \theta } \right) = {\text{cos}}\theta $.
Squaring on both sides, we get
So ${\text{si}}{{\text{n}}^2}\left( {90 - \theta } \right) = {\text{co}}{{\text{s}}^2}\theta $
Now we use the above identity to express the LHS of the given as follows:
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{si}}{{\text{n}}^2}\left( {90 - 15} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 10} \right)^\circ + {\text{si}}{{\text{n}}^2}\left( {90 - 5} \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{si}}{{\text{n}}^2}10^\circ + {\text{si}}{{\text{n}}^2}15^\circ ... + {\text{si}}{{\text{n}}^2}45^\circ ....{\text{co}}{{\text{s}}^2}\left( {15} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( {10} \right)^\circ + {\text{co}}{{\text{s}}^2}\left( 5 \right)^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
Each term after 45° of angle in sin function, is expressed as a difference of 90° and its complementary angle as shown.
Also we know the identity, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
So we rearrange the terms in the given equation we get 8 cases of ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$
$ \Rightarrow {\text{si}}{{\text{n}}^2}5^\circ + {\text{co}}{{\text{s}}^2}5^\circ + {\text{si}}{{\text{n}}^2}15^\circ + {\text{co}}{{\text{s}}^2}15^\circ + ...........{\text{si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ $
$
\Rightarrow 8{\text{ + si}}{{\text{n}}^2}45^\circ + {\text{si}}{{\text{n}}^2}90^\circ \\
\Rightarrow 8 + \dfrac{1}{2} + 1 \\
\Rightarrow 9\dfrac{1}{2} \\
$
Hence LHS = RHS, hence proved.
Note: In order to solve problems of this type the key is to pick the appropriate identity such that when applied makes the equation the way we want it. Having adequate knowledge in trigonometric identities and trigonometric table of sine, is required.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
