
What is \[{\sin ^6}\theta \] in terms of non-exponential trigonometric function?
Answer
478.8k+ views
Hint: We use some concepts of complex numbers and their properties to solve this problem. We use some algebraic identities like
\[{(a + b)^6} = {a^6} + 6{a^5}b + 15{a^4}{b^2} + 20{a^3}{b^3} + 15{a^2}{b^4} + 6a{b^5} + {b^6}\]
\[{(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\]
Complete step by step answer:
A complex number is an imaginary number which has no definite value. All the rational and irrational numbers come under these complex numbers. It is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part. Some examples of complex numbers are \[1, - \dfrac{5}{7},(3 + 4i)\] and so on.
We all know the De-Moivre’s theorem which tells us that, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^n} = \cos (n\theta ) + i\sin (n\theta )\]
Here, let the value of \[n\] be 6.
So, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]
Let \[\cos \theta = c\] and \[\sin \theta = s\] for our convenience. So, that implies \[{c^2} + {s^2} = 1\] -----(1)
So, now let’s evaluate the left-hand part, which is \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = {(c + is)^6}\]
So, \[{(c + is)^6} = {c^6} + 6i{c^5}s - 15{c^4}{s^2} - 20i{c^3}{s^3} + 15{c^2}{s^4} + 6ic{s^5} - {s^6}\]
\[ \Rightarrow {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
So, we can conclude that,
\[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]\[ = {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
Now, equating the real parts, we get \[\cos (6\theta ) = {c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}\]
Now, from (1), we get, \[{c^2} = 1 - {s^2}\] and substitute this in above.
\[ \Rightarrow \cos (6\theta ) = {\left( {1 - {s^2}} \right)^3} - 15{\left( {1 - {s^2}} \right)^2}{s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = \left( {1 - 3{s^2} + 3{s^4} - {s^6}} \right) - 15\left( {1 - 2{s^2} + {s^4}} \right){s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
Now, let us simplify further.
\[ \Rightarrow \cos (6\theta ) = 1 - 3{s^2} + 3{s^4} - {s^6} - \left( {15{s^2} - 30{s^4} + 15{s^6}} \right) + \left( {15{s^4} - 15{s^6}} \right) - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18{s^2} + 48{s^4} - 32{s^6}\] ------(2)
Now in the same way, we will evaluate \[\cos (4\theta ) + i\sin (4\theta ) = {\left( {c + is} \right)^4}\]
\[ \Rightarrow {\left( {c + is} \right)^4} = {c^4} + 4i{c^3}s - 6{c^2}{s^2} - 4ic{s^3} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) + i\sin (4\theta ) = ({c^4} - 6{c^2}{s^2} + {s^4}) + i(4{c^3}s - 4c{s^3})\]
Equating the real parts, we get,
\[\cos (4\theta ) = {c^4} - 6{c^2}{s^2} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = {(1 - {s^2})^2} - 6(1 - {s^2}){s^2} + {s^4}\]
So, we get,
\[ \Rightarrow \cos (4\theta ) = (1 - 2{s^2} + {s^4}) - 6({s^2} - {s^4}) + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8{s^2} + 8{s^4}\] ------(3)
Now let us evaluate \[\cos (2\theta ) + i\sin (2\theta ) = {(c + is)^2}\]
\[ \Rightarrow {(c + is)^2} = ({c^2} - {s^2}) + i(2cs)\]
Equating real parts,
\[ \Rightarrow \cos (2\theta ) = {c^2} - {s^2} = (1 - {s^2}) - {s^2}\]
\[ \Rightarrow \cos (2\theta ) = 1 - 2{s^2}\] -----(4)
Now, derive the value of \[{s^2}\] from this equation.
\[{s^2} = \dfrac{{1 - \cos (2\theta )}}{2}\]
Now, substitute this value in equation (3), and find the value of \[{s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 8{s^4}\]
\[ \Rightarrow {s^4} = \dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}\]
Now, substitute this value in equation (2) and find the value of \[{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 48\left( {\dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}} \right) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 9\left( {1 - \cos (2\theta )} \right) + 6\left( {\cos (4\theta ) + 3 - 4\cos (2\theta )} \right) - 32{s^6}\]
So, we get it as,
\[ \Rightarrow \cos (6\theta ) = 1 - 9 + 9\cos (2\theta ) + 6\cos (4\theta ) + 18 - 24\cos (2\theta ) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 6\cos (4\theta ) + 10 - 15\cos (2\theta ) - 32{s^6}\]
So, we finally get,
\[ \Rightarrow {s^6} = \dfrac{1}{{32}}\left( {6\cos (4\theta ) + 10 - 15\cos (2\theta ) - \cos (6\theta )} \right)\]
And we know that, \[{s^6} = {\sin ^6}\theta \]
So, we can conclude that,
\[{\sin ^6}\theta = \dfrac{1}{{32}}\left( {6\cos (4\theta ) - 15\cos (2\theta ) - \cos (6\theta ) + 10} \right)\]
Note:
Here, \[i\] is a complex value, and it is \[i = \sqrt { - 1} \]. So, it can be written as \[{i^2} = - 1\].
Consider the value \[{i^n}\]. If \[n\] is a multiple of 4, then \[{i^n} = 1\]
If \[n\] is an even number other than multiples of 4, then \[{i^n} = - 1\].
An imaginary number is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part.
\[{(a + b)^6} = {a^6} + 6{a^5}b + 15{a^4}{b^2} + 20{a^3}{b^3} + 15{a^2}{b^4} + 6a{b^5} + {b^6}\]
\[{(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\]
Complete step by step answer:
A complex number is an imaginary number which has no definite value. All the rational and irrational numbers come under these complex numbers. It is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part. Some examples of complex numbers are \[1, - \dfrac{5}{7},(3 + 4i)\] and so on.
We all know the De-Moivre’s theorem which tells us that, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^n} = \cos (n\theta ) + i\sin (n\theta )\]
Here, let the value of \[n\] be 6.
So, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]
Let \[\cos \theta = c\] and \[\sin \theta = s\] for our convenience. So, that implies \[{c^2} + {s^2} = 1\] -----(1)
So, now let’s evaluate the left-hand part, which is \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = {(c + is)^6}\]
So, \[{(c + is)^6} = {c^6} + 6i{c^5}s - 15{c^4}{s^2} - 20i{c^3}{s^3} + 15{c^2}{s^4} + 6ic{s^5} - {s^6}\]
\[ \Rightarrow {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
So, we can conclude that,
\[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]\[ = {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
Now, equating the real parts, we get \[\cos (6\theta ) = {c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}\]
Now, from (1), we get, \[{c^2} = 1 - {s^2}\] and substitute this in above.
\[ \Rightarrow \cos (6\theta ) = {\left( {1 - {s^2}} \right)^3} - 15{\left( {1 - {s^2}} \right)^2}{s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = \left( {1 - 3{s^2} + 3{s^4} - {s^6}} \right) - 15\left( {1 - 2{s^2} + {s^4}} \right){s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
Now, let us simplify further.
\[ \Rightarrow \cos (6\theta ) = 1 - 3{s^2} + 3{s^4} - {s^6} - \left( {15{s^2} - 30{s^4} + 15{s^6}} \right) + \left( {15{s^4} - 15{s^6}} \right) - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18{s^2} + 48{s^4} - 32{s^6}\] ------(2)
Now in the same way, we will evaluate \[\cos (4\theta ) + i\sin (4\theta ) = {\left( {c + is} \right)^4}\]
\[ \Rightarrow {\left( {c + is} \right)^4} = {c^4} + 4i{c^3}s - 6{c^2}{s^2} - 4ic{s^3} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) + i\sin (4\theta ) = ({c^4} - 6{c^2}{s^2} + {s^4}) + i(4{c^3}s - 4c{s^3})\]
Equating the real parts, we get,
\[\cos (4\theta ) = {c^4} - 6{c^2}{s^2} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = {(1 - {s^2})^2} - 6(1 - {s^2}){s^2} + {s^4}\]
So, we get,
\[ \Rightarrow \cos (4\theta ) = (1 - 2{s^2} + {s^4}) - 6({s^2} - {s^4}) + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8{s^2} + 8{s^4}\] ------(3)
Now let us evaluate \[\cos (2\theta ) + i\sin (2\theta ) = {(c + is)^2}\]
\[ \Rightarrow {(c + is)^2} = ({c^2} - {s^2}) + i(2cs)\]
Equating real parts,
\[ \Rightarrow \cos (2\theta ) = {c^2} - {s^2} = (1 - {s^2}) - {s^2}\]
\[ \Rightarrow \cos (2\theta ) = 1 - 2{s^2}\] -----(4)
Now, derive the value of \[{s^2}\] from this equation.
\[{s^2} = \dfrac{{1 - \cos (2\theta )}}{2}\]
Now, substitute this value in equation (3), and find the value of \[{s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 8{s^4}\]
\[ \Rightarrow {s^4} = \dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}\]
Now, substitute this value in equation (2) and find the value of \[{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 48\left( {\dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}} \right) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 9\left( {1 - \cos (2\theta )} \right) + 6\left( {\cos (4\theta ) + 3 - 4\cos (2\theta )} \right) - 32{s^6}\]
So, we get it as,
\[ \Rightarrow \cos (6\theta ) = 1 - 9 + 9\cos (2\theta ) + 6\cos (4\theta ) + 18 - 24\cos (2\theta ) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 6\cos (4\theta ) + 10 - 15\cos (2\theta ) - 32{s^6}\]
So, we finally get,
\[ \Rightarrow {s^6} = \dfrac{1}{{32}}\left( {6\cos (4\theta ) + 10 - 15\cos (2\theta ) - \cos (6\theta )} \right)\]
And we know that, \[{s^6} = {\sin ^6}\theta \]
So, we can conclude that,
\[{\sin ^6}\theta = \dfrac{1}{{32}}\left( {6\cos (4\theta ) - 15\cos (2\theta ) - \cos (6\theta ) + 10} \right)\]
Note:
Here, \[i\] is a complex value, and it is \[i = \sqrt { - 1} \]. So, it can be written as \[{i^2} = - 1\].
Consider the value \[{i^n}\]. If \[n\] is a multiple of 4, then \[{i^n} = 1\]
If \[n\] is an even number other than multiples of 4, then \[{i^n} = - 1\].
An imaginary number is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

