
What is \[{\sin ^6}\theta \] in terms of non-exponential trigonometric function?
Answer
493.2k+ views
Hint: We use some concepts of complex numbers and their properties to solve this problem. We use some algebraic identities like
\[{(a + b)^6} = {a^6} + 6{a^5}b + 15{a^4}{b^2} + 20{a^3}{b^3} + 15{a^2}{b^4} + 6a{b^5} + {b^6}\]
\[{(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\]
Complete step by step answer:
A complex number is an imaginary number which has no definite value. All the rational and irrational numbers come under these complex numbers. It is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part. Some examples of complex numbers are \[1, - \dfrac{5}{7},(3 + 4i)\] and so on.
We all know the De-Moivre’s theorem which tells us that, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^n} = \cos (n\theta ) + i\sin (n\theta )\]
Here, let the value of \[n\] be 6.
So, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]
Let \[\cos \theta = c\] and \[\sin \theta = s\] for our convenience. So, that implies \[{c^2} + {s^2} = 1\] -----(1)
So, now let’s evaluate the left-hand part, which is \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = {(c + is)^6}\]
So, \[{(c + is)^6} = {c^6} + 6i{c^5}s - 15{c^4}{s^2} - 20i{c^3}{s^3} + 15{c^2}{s^4} + 6ic{s^5} - {s^6}\]
\[ \Rightarrow {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
So, we can conclude that,
\[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]\[ = {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
Now, equating the real parts, we get \[\cos (6\theta ) = {c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}\]
Now, from (1), we get, \[{c^2} = 1 - {s^2}\] and substitute this in above.
\[ \Rightarrow \cos (6\theta ) = {\left( {1 - {s^2}} \right)^3} - 15{\left( {1 - {s^2}} \right)^2}{s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = \left( {1 - 3{s^2} + 3{s^4} - {s^6}} \right) - 15\left( {1 - 2{s^2} + {s^4}} \right){s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
Now, let us simplify further.
\[ \Rightarrow \cos (6\theta ) = 1 - 3{s^2} + 3{s^4} - {s^6} - \left( {15{s^2} - 30{s^4} + 15{s^6}} \right) + \left( {15{s^4} - 15{s^6}} \right) - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18{s^2} + 48{s^4} - 32{s^6}\] ------(2)
Now in the same way, we will evaluate \[\cos (4\theta ) + i\sin (4\theta ) = {\left( {c + is} \right)^4}\]
\[ \Rightarrow {\left( {c + is} \right)^4} = {c^4} + 4i{c^3}s - 6{c^2}{s^2} - 4ic{s^3} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) + i\sin (4\theta ) = ({c^4} - 6{c^2}{s^2} + {s^4}) + i(4{c^3}s - 4c{s^3})\]
Equating the real parts, we get,
\[\cos (4\theta ) = {c^4} - 6{c^2}{s^2} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = {(1 - {s^2})^2} - 6(1 - {s^2}){s^2} + {s^4}\]
So, we get,
\[ \Rightarrow \cos (4\theta ) = (1 - 2{s^2} + {s^4}) - 6({s^2} - {s^4}) + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8{s^2} + 8{s^4}\] ------(3)
Now let us evaluate \[\cos (2\theta ) + i\sin (2\theta ) = {(c + is)^2}\]
\[ \Rightarrow {(c + is)^2} = ({c^2} - {s^2}) + i(2cs)\]
Equating real parts,
\[ \Rightarrow \cos (2\theta ) = {c^2} - {s^2} = (1 - {s^2}) - {s^2}\]
\[ \Rightarrow \cos (2\theta ) = 1 - 2{s^2}\] -----(4)
Now, derive the value of \[{s^2}\] from this equation.
\[{s^2} = \dfrac{{1 - \cos (2\theta )}}{2}\]
Now, substitute this value in equation (3), and find the value of \[{s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 8{s^4}\]
\[ \Rightarrow {s^4} = \dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}\]
Now, substitute this value in equation (2) and find the value of \[{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 48\left( {\dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}} \right) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 9\left( {1 - \cos (2\theta )} \right) + 6\left( {\cos (4\theta ) + 3 - 4\cos (2\theta )} \right) - 32{s^6}\]
So, we get it as,
\[ \Rightarrow \cos (6\theta ) = 1 - 9 + 9\cos (2\theta ) + 6\cos (4\theta ) + 18 - 24\cos (2\theta ) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 6\cos (4\theta ) + 10 - 15\cos (2\theta ) - 32{s^6}\]
So, we finally get,
\[ \Rightarrow {s^6} = \dfrac{1}{{32}}\left( {6\cos (4\theta ) + 10 - 15\cos (2\theta ) - \cos (6\theta )} \right)\]
And we know that, \[{s^6} = {\sin ^6}\theta \]
So, we can conclude that,
\[{\sin ^6}\theta = \dfrac{1}{{32}}\left( {6\cos (4\theta ) - 15\cos (2\theta ) - \cos (6\theta ) + 10} \right)\]
Note:
Here, \[i\] is a complex value, and it is \[i = \sqrt { - 1} \]. So, it can be written as \[{i^2} = - 1\].
Consider the value \[{i^n}\]. If \[n\] is a multiple of 4, then \[{i^n} = 1\]
If \[n\] is an even number other than multiples of 4, then \[{i^n} = - 1\].
An imaginary number is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part.
\[{(a + b)^6} = {a^6} + 6{a^5}b + 15{a^4}{b^2} + 20{a^3}{b^3} + 15{a^2}{b^4} + 6a{b^5} + {b^6}\]
\[{(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\]
Complete step by step answer:
A complex number is an imaginary number which has no definite value. All the rational and irrational numbers come under these complex numbers. It is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part. Some examples of complex numbers are \[1, - \dfrac{5}{7},(3 + 4i)\] and so on.
We all know the De-Moivre’s theorem which tells us that, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^n} = \cos (n\theta ) + i\sin (n\theta )\]
Here, let the value of \[n\] be 6.
So, \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]
Let \[\cos \theta = c\] and \[\sin \theta = s\] for our convenience. So, that implies \[{c^2} + {s^2} = 1\] -----(1)
So, now let’s evaluate the left-hand part, which is \[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = {(c + is)^6}\]
So, \[{(c + is)^6} = {c^6} + 6i{c^5}s - 15{c^4}{s^2} - 20i{c^3}{s^3} + 15{c^2}{s^4} + 6ic{s^5} - {s^6}\]
\[ \Rightarrow {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
So, we can conclude that,
\[{\left( {\cos (\theta ) + i\sin (\theta )} \right)^6} = \cos (6\theta ) + i\sin (6\theta )\]\[ = {(c + is)^6} = ({c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}) + i(6{c^5}s - 20{c^3}{s^3} + 6c{s^5})\]
Now, equating the real parts, we get \[\cos (6\theta ) = {c^6} - 15{c^4}{s^2} + 15{c^2}{s^4} - {s^6}\]
Now, from (1), we get, \[{c^2} = 1 - {s^2}\] and substitute this in above.
\[ \Rightarrow \cos (6\theta ) = {\left( {1 - {s^2}} \right)^3} - 15{\left( {1 - {s^2}} \right)^2}{s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = \left( {1 - 3{s^2} + 3{s^4} - {s^6}} \right) - 15\left( {1 - 2{s^2} + {s^4}} \right){s^2} + 15\left( {1 - {s^2}} \right){s^4} - {s^6}\]
Now, let us simplify further.
\[ \Rightarrow \cos (6\theta ) = 1 - 3{s^2} + 3{s^4} - {s^6} - \left( {15{s^2} - 30{s^4} + 15{s^6}} \right) + \left( {15{s^4} - 15{s^6}} \right) - {s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18{s^2} + 48{s^4} - 32{s^6}\] ------(2)
Now in the same way, we will evaluate \[\cos (4\theta ) + i\sin (4\theta ) = {\left( {c + is} \right)^4}\]
\[ \Rightarrow {\left( {c + is} \right)^4} = {c^4} + 4i{c^3}s - 6{c^2}{s^2} - 4ic{s^3} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) + i\sin (4\theta ) = ({c^4} - 6{c^2}{s^2} + {s^4}) + i(4{c^3}s - 4c{s^3})\]
Equating the real parts, we get,
\[\cos (4\theta ) = {c^4} - 6{c^2}{s^2} + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = {(1 - {s^2})^2} - 6(1 - {s^2}){s^2} + {s^4}\]
So, we get,
\[ \Rightarrow \cos (4\theta ) = (1 - 2{s^2} + {s^4}) - 6({s^2} - {s^4}) + {s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8{s^2} + 8{s^4}\] ------(3)
Now let us evaluate \[\cos (2\theta ) + i\sin (2\theta ) = {(c + is)^2}\]
\[ \Rightarrow {(c + is)^2} = ({c^2} - {s^2}) + i(2cs)\]
Equating real parts,
\[ \Rightarrow \cos (2\theta ) = {c^2} - {s^2} = (1 - {s^2}) - {s^2}\]
\[ \Rightarrow \cos (2\theta ) = 1 - 2{s^2}\] -----(4)
Now, derive the value of \[{s^2}\] from this equation.
\[{s^2} = \dfrac{{1 - \cos (2\theta )}}{2}\]
Now, substitute this value in equation (3), and find the value of \[{s^4}\]
\[ \Rightarrow \cos (4\theta ) = 1 - 8\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 8{s^4}\]
\[ \Rightarrow {s^4} = \dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}\]
Now, substitute this value in equation (2) and find the value of \[{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 18\left( {\dfrac{{1 - \cos (2\theta )}}{2}} \right) + 48\left( {\dfrac{{\cos (4\theta ) + 3 - 4\cos (2\theta )}}{8}} \right) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 1 - 9\left( {1 - \cos (2\theta )} \right) + 6\left( {\cos (4\theta ) + 3 - 4\cos (2\theta )} \right) - 32{s^6}\]
So, we get it as,
\[ \Rightarrow \cos (6\theta ) = 1 - 9 + 9\cos (2\theta ) + 6\cos (4\theta ) + 18 - 24\cos (2\theta ) - 32{s^6}\]
\[ \Rightarrow \cos (6\theta ) = 6\cos (4\theta ) + 10 - 15\cos (2\theta ) - 32{s^6}\]
So, we finally get,
\[ \Rightarrow {s^6} = \dfrac{1}{{32}}\left( {6\cos (4\theta ) + 10 - 15\cos (2\theta ) - \cos (6\theta )} \right)\]
And we know that, \[{s^6} = {\sin ^6}\theta \]
So, we can conclude that,
\[{\sin ^6}\theta = \dfrac{1}{{32}}\left( {6\cos (4\theta ) - 15\cos (2\theta ) - \cos (6\theta ) + 10} \right)\]
Note:
Here, \[i\] is a complex value, and it is \[i = \sqrt { - 1} \]. So, it can be written as \[{i^2} = - 1\].
Consider the value \[{i^n}\]. If \[n\] is a multiple of 4, then \[{i^n} = 1\]
If \[n\] is an even number other than multiples of 4, then \[{i^n} = - 1\].
An imaginary number is written as \[a + ib\] where \[a\] is the real part and \[b\] is the imaginary part.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

