Answer
Verified
427.8k+ views
Hint:First step in simplifying the question is that any variable when divided by a fraction implies that the variable is multiplied by the reciprocal of the fraction. Next, we simplify the exponent of the numerator of the overall fraction by breaking the exponent into parts. The final step will be rearranging the expression.
Complete step by step solution:
As we know that the division of any number or any expression by a fraction equals to the
multiplication of the same expression by the reciprocal of the fraction. The expression in the question can be written as
$\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} = {x^{\dfrac{3}{2}}} \times (\dfrac{2}{3}) =
\dfrac{{2{x^{\dfrac{3}{2}}}}}{3}$
Let us now simplify the variable part of the expression, that is ${x^{\dfrac{3}{2}}}$.
We know that, ${x^{\dfrac{1}{2}}} = \sqrt x $.
So, ${x^{\dfrac{3}{2}}} = {({x^{\dfrac{1}{2}}})^3} = {({x^3})^{\dfrac{1}{2}}} = \sqrt {{x^3}} $… (Let this be equation (i))
Now that we have simplified the numerator of the expression, let us put the value of equation (i) in the place of the variable to arrive at the final expression.
$\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} = \dfrac{{2{x^{\dfrac{3}{2}}}}}{3} = \dfrac{{2\sqrt {{x^3}} }}{3}$
Note: In this question we may also simplify ${x^{\dfrac{3}{2}}} = {x^{\dfrac{1}{2} + 1}} = {x^{\dfrac{1}{2}}} \times x$. If we put this in the expression, we get $\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} = \dfrac{{2{x^{\dfrac{1}{2}}} \times x}}{3}$. This can be further written as, $\dfrac{{2x\sqrt x }}{3}$. In these types of simplifications, it is all subjective to when one wants to stop simplifying. There are also types of expressions that cannot be simplified, but rearranged. Some questions can just be a mixture of both.
Complete step by step solution:
As we know that the division of any number or any expression by a fraction equals to the
multiplication of the same expression by the reciprocal of the fraction. The expression in the question can be written as
$\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} = {x^{\dfrac{3}{2}}} \times (\dfrac{2}{3}) =
\dfrac{{2{x^{\dfrac{3}{2}}}}}{3}$
Let us now simplify the variable part of the expression, that is ${x^{\dfrac{3}{2}}}$.
We know that, ${x^{\dfrac{1}{2}}} = \sqrt x $.
So, ${x^{\dfrac{3}{2}}} = {({x^{\dfrac{1}{2}}})^3} = {({x^3})^{\dfrac{1}{2}}} = \sqrt {{x^3}} $… (Let this be equation (i))
Now that we have simplified the numerator of the expression, let us put the value of equation (i) in the place of the variable to arrive at the final expression.
$\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} = \dfrac{{2{x^{\dfrac{3}{2}}}}}{3} = \dfrac{{2\sqrt {{x^3}} }}{3}$
Note: In this question we may also simplify ${x^{\dfrac{3}{2}}} = {x^{\dfrac{1}{2} + 1}} = {x^{\dfrac{1}{2}}} \times x$. If we put this in the expression, we get $\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} = \dfrac{{2{x^{\dfrac{1}{2}}} \times x}}{3}$. This can be further written as, $\dfrac{{2x\sqrt x }}{3}$. In these types of simplifications, it is all subjective to when one wants to stop simplifying. There are also types of expressions that cannot be simplified, but rearranged. Some questions can just be a mixture of both.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it