
How do you simplify${\left( {\dfrac{9}{2}} \right)^{ - 1}}$?
Answer
560.4k+ views
Hint: In order to solve the above question ,replace the numerator with denominator and denominator with numerator and remove the exponent value ,you’ll get your required result.
Formula:
${x^a} = \dfrac{1}{{{x^{ - a}}}}\,$
$
{\left( {{x^a}} \right)^b} = {x^{a \times b}} \\
\dfrac{1}{{{x^a}}} = {x^{ - a}} \;
$
${a^1} = a$
Complete step-by-step answer:
Given a rational number raised to the power negative value i.e.$ - 1$
In such case , to remove the negative sign from the number , replace the numerator with denominator and denominator with numerator and remove the negative sign from the exponent
$
= {\left( {\dfrac{9}{2}} \right)^{ - 1}} \\
= \dfrac{1}{{{{\left( {\dfrac{9}{2}} \right)}^{ (-) - 1}}}} \\
= \dfrac{1}{{{{\left( {\dfrac{9}{2}} \right)}^1}}} \\
= \dfrac{1}{{\left( {\dfrac{9}{2}} \right)}} \\
= \dfrac{2}{9} \;
$
Therefore ,our required answer is $\dfrac{2}{9}$
So, the correct answer is “$\dfrac{2}{9}$”.
Note: Alternatively we have another way to solve the above simplification problem
Bye using the some of the identities of exponent that are mentioned below:
$
{\left( {{x^a}} \right)^b} = {x^{a \times b}} \\
\dfrac{1}{{{x^a}}} = {x^{ - a}} \;
$
Now, applying these identities on our question
$
= {\left( {\dfrac{9}{2}} \right)^{ - 1}} \\
= \left( {\dfrac{{{9^{ - 1}}}}{{{2^{ - 1}}}}} \right) \\
= {9^{ - 1}} \times \dfrac{1}{{{2^{ - 1}}}} \\
= \dfrac{1}{{{9^{ (-) - 1}}}} \times {2^{ (-) - 1}} \\
= \dfrac{1}{{{9^1}}} \times {2^1} \\
= \dfrac{1}{9} \times 2 \\
= \dfrac{2}{9} \;
$
Formula:
${x^a} = \dfrac{1}{{{x^{ - a}}}}\,$
$
{\left( {{x^a}} \right)^b} = {x^{a \times b}} \\
\dfrac{1}{{{x^a}}} = {x^{ - a}} \;
$
${a^1} = a$
Complete step-by-step answer:
Given a rational number raised to the power negative value i.e.$ - 1$
In such case , to remove the negative sign from the number , replace the numerator with denominator and denominator with numerator and remove the negative sign from the exponent
$
= {\left( {\dfrac{9}{2}} \right)^{ - 1}} \\
= \dfrac{1}{{{{\left( {\dfrac{9}{2}} \right)}^{ (-) - 1}}}} \\
= \dfrac{1}{{{{\left( {\dfrac{9}{2}} \right)}^1}}} \\
= \dfrac{1}{{\left( {\dfrac{9}{2}} \right)}} \\
= \dfrac{2}{9} \;
$
Therefore ,our required answer is $\dfrac{2}{9}$
So, the correct answer is “$\dfrac{2}{9}$”.
Note: Alternatively we have another way to solve the above simplification problem
Bye using the some of the identities of exponent that are mentioned below:
$
{\left( {{x^a}} \right)^b} = {x^{a \times b}} \\
\dfrac{1}{{{x^a}}} = {x^{ - a}} \;
$
Now, applying these identities on our question
$
= {\left( {\dfrac{9}{2}} \right)^{ - 1}} \\
= \left( {\dfrac{{{9^{ - 1}}}}{{{2^{ - 1}}}}} \right) \\
= {9^{ - 1}} \times \dfrac{1}{{{2^{ - 1}}}} \\
= \dfrac{1}{{{9^{ (-) - 1}}}} \times {2^{ (-) - 1}} \\
= \dfrac{1}{{{9^1}}} \times {2^1} \\
= \dfrac{1}{9} \times 2 \\
= \dfrac{2}{9} \;
$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


