
Simplify this expression ${{a}^{m}}\times {{a}^{n}}$.
(a) ${{a}^{m}}+{{a}^{n}}$
(b) ${{a}^{m-n}}$
(c) ${{a}^{m+n}}$
(d) ${{a}^{mn}}$
Answer
535.5k+ views
Hint: Before going to solve this problem, we will discuss the concept of Base and Exponent. When we want to calculate the value ${{2}^{3}}$. Here $2$ is called as base and $3$ is called as exponent and the value of ${{2}^{3}}$ is calculated as ${{2}^{3}}=2\times 2\times 2=8$. From this we can say that the value of ${{a}^{m}}$ where $a$ is the base and $m$ is the exponent is obtained by multiplying the base $a$ with itself $m$(exponent) time. We have some basic exponent rules involving binary operations of bases and exponents. These are the following rules, (${{x}^{a}}{{x}^{b}}={{x}^{a+b}}$; $\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}}$; ${{\left( {{x}^{a}} \right)}^{b}}={{x}^{ab}}$; ${{\left( xy \right)}^{a}}={{x}^{a}}{{y}^{a}}$.
Complete step-by-step answer:
Let us assume that $a=2$, $m=1$, $n=2$ then the value of ${{a}^{m}}\times {{a}^{n}}$is
$\begin{align}
& {{a}^{m}}\times {{a}^{n}}={{2}^{1}}\times {{2}^{2}} \\
& \Rightarrow {{a}^{m}}\times {{a}^{n}}=2\times 4 \\
& \therefore {{a}^{m}}\times {{a}^{n}}=8 \\
\end{align}$
Now the value of ${{a}^{m}}+{{a}^{n}}$ is
$\begin{align}
& {{a}^{m}}+{{a}^{n}}={{2}^{1}}+{{2}^{2}} \\
& \Rightarrow {{a}^{m}}+{{a}^{n}}=2+4 \\
& \therefore {{a}^{m}}+{{a}^{n}}=6......\left( \text{i} \right) \\
\end{align}$
The value of ${{a}^{m-n}}$ is
$\begin{align}
& {{a}^{m-n}}={{2}^{1-2}} \\
& \Rightarrow {{a}^{m-n}}={{2}^{-1}} \\
& \therefore {{a}^{m-n}}=\dfrac{1}{2}.....\left( \text{ii} \right) \\
\end{align}$
The value of ${{a}^{m+n}}$ is
$\begin{align}
& {{a}^{m+n}}={{2}^{1+2}} \\
& \Rightarrow {{a}^{m+n}}={{2}^{3}} \\
& \therefore {{a}^{m+n}}=8.....\left( \text{iii} \right) \\
\end{align}$
The value of ${{a}^{mn}}$ is
$\begin{align}
& {{a}^{mn}}={{2}^{1\left( 2 \right)}} \\
& \Rightarrow {{a}^{mn}}={{2}^{2}} \\
& \therefore {{a}^{mn}}=4......\left( \text{iv} \right) \\
\end{align}$
From equations $\left( \text{i} \right),\left( \text{ii} \right),\left( \text{iii} \right),\left( \text{iv} \right)$ , we can say that the value of ${{a}^{m}}\times {{a}^{n}}$ is equals to the value of ${{a}^{m+n}}$, hence we can say that
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
Note: For this kind of problem it’s the better way to assume the values and check for the option. Some of the similar problem that can be solved by this method are
$\begin{align}
& \dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} \\
& {{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}
\end{align}$
Complete step-by-step answer:
Let us assume that $a=2$, $m=1$, $n=2$ then the value of ${{a}^{m}}\times {{a}^{n}}$is
$\begin{align}
& {{a}^{m}}\times {{a}^{n}}={{2}^{1}}\times {{2}^{2}} \\
& \Rightarrow {{a}^{m}}\times {{a}^{n}}=2\times 4 \\
& \therefore {{a}^{m}}\times {{a}^{n}}=8 \\
\end{align}$
Now the value of ${{a}^{m}}+{{a}^{n}}$ is
$\begin{align}
& {{a}^{m}}+{{a}^{n}}={{2}^{1}}+{{2}^{2}} \\
& \Rightarrow {{a}^{m}}+{{a}^{n}}=2+4 \\
& \therefore {{a}^{m}}+{{a}^{n}}=6......\left( \text{i} \right) \\
\end{align}$
The value of ${{a}^{m-n}}$ is
$\begin{align}
& {{a}^{m-n}}={{2}^{1-2}} \\
& \Rightarrow {{a}^{m-n}}={{2}^{-1}} \\
& \therefore {{a}^{m-n}}=\dfrac{1}{2}.....\left( \text{ii} \right) \\
\end{align}$
The value of ${{a}^{m+n}}$ is
$\begin{align}
& {{a}^{m+n}}={{2}^{1+2}} \\
& \Rightarrow {{a}^{m+n}}={{2}^{3}} \\
& \therefore {{a}^{m+n}}=8.....\left( \text{iii} \right) \\
\end{align}$
The value of ${{a}^{mn}}$ is
$\begin{align}
& {{a}^{mn}}={{2}^{1\left( 2 \right)}} \\
& \Rightarrow {{a}^{mn}}={{2}^{2}} \\
& \therefore {{a}^{mn}}=4......\left( \text{iv} \right) \\
\end{align}$
From equations $\left( \text{i} \right),\left( \text{ii} \right),\left( \text{iii} \right),\left( \text{iv} \right)$ , we can say that the value of ${{a}^{m}}\times {{a}^{n}}$ is equals to the value of ${{a}^{m+n}}$, hence we can say that
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
Note: For this kind of problem it’s the better way to assume the values and check for the option. Some of the similar problem that can be solved by this method are
$\begin{align}
& \dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} \\
& {{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}
\end{align}$
Recently Updated Pages
Figure shows planar loops of different shapes moving class 12 physics CBSE

Differentiate between collenchyma and sclerenchyma class 11 biology CBSE

A wire is in the form of a tetrahedron The resistance class 12 physics CBSE

Indian Railways network is the largest in the world class 10 social science CBSE

Find the square root of complex number 9 + 40i class 12 maths CBSE

When a body is charged its mass A Increase B Decrease class 11 physics CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

