
Simplify the term ${\left( {{{\text{a}}^2} - {{\text{b}}^2}} \right)^2}$
$
{\text{A}}{\text{. }}{\left( {\text{b}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{B}}{\text{. }}{\left( {{\text{a + b}}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{C}}{\text{. }}{\left( {{\text{a - b}}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{D}}{\text{. }}{\left( {{\text{a + b}}} \right)^2}{\left( {\text{a}} \right)^2} \\
$
Answer
611.7k+ views
Hint – To find the answer, we expand the given term and we expand each of the terms individually given in the choices to verify and find which term is equal to the given.
Complete step-by-step answer:
Given Data, ${\left( {{{\text{a}}^2} - {{\text{b}}^2}} \right)^2}$
It is of the form${\left( {{\text{x - y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2} - {\text{2xy}}$, where x = ${{\text{a}}^2}$and y =${{\text{b}}^2}$. Hence we get
$ \Rightarrow {\left( {{{\text{a}}^2}} \right)^2} - 2{{\text{a}}^2}{{\text{b}}^2} + {\left( {{{\text{b}}^2}} \right)^2}$
$ \Rightarrow {{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
Similarly, ${\left( {{\text{x + y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2}{\text{ + 2xy}}$
Now we expand the give options:
$
{\text{A}}{\text{.}}{\left( {\text{b}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{ }} \Rightarrow {{\text{b}}^2}\left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4} - {\text{2a}}{{\text{b}}^3} \\
$
This is not equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
$
{\text{B}}{\text{.}}{\left( {{\text{a + b}}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{ }} \Rightarrow \left( {{{\text{a}}^2} + {{\text{b}}^2} + 2{\text{ab}}} \right)\left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^4} + 2{{\text{a}}^2}{{\text{b}}^2}{\text{ - 2}}{{\text{a}}^3}{\text{b + }}{{\text{b}}^4} - {\text{2a}}{{\text{b}}^3} + {\text{2}}{{\text{a}}^3}{\text{b}} + {\text{2a}}{{\text{b}}^3} - 4{{\text{a}}^2}{{\text{b}}^2} \\
{\text{ }} \Rightarrow {{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4} \\
$
This is equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$. Hence Option B is an answer.
$
{\text{C}}{\text{.}}{\left( {{\text{a - b}}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{ }} \Rightarrow \left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right)\left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^4} + 2{{\text{a}}^2}{{\text{b}}^2}{\text{ - 2}}{{\text{a}}^3}{\text{b + }}{{\text{b}}^4} - {\text{2a}}{{\text{b}}^3}{\text{ - 2}}{{\text{a}}^3}{\text{b - 2a}}{{\text{b}}^3} + 4{{\text{a}}^2}{{\text{b}}^2} \\
{\text{ }} \Rightarrow {{\text{a}}^4}{\text{ + 6}}{{\text{a}}^2}{{\text{b}}^2} - 4{\text{a}}{{\text{b}}^3} - 4{{\text{a}}^3}{\text{b}} + {{\text{b}}^4} \\
$
This is not equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
$
{\text{D}}{\text{.}}{\left( {\text{a}} \right)^2}{\left( {{\text{a + b}}} \right)^2} \\
{\text{ }} \Rightarrow {{\text{a}}^2}\left( {{{\text{a}}^2} + {{\text{b}}^2} + 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^2}{{\text{b}}^2} + {{\text{a}}^4}{\text{ + 2}}{{\text{a}}^3}{\text{b}} \\
$
This is not equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
Hence Option B is the correct answer.
Note – In order to solve this type of problems the key is to know the formulas ${\left( {{\text{x + y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2}{\text{ + 2xy}}$ and ${\left( {{\text{x - y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2} - {\text{2xy}}$ which are used in the expansion.
This problem can be solved in a simpler way, i.e. by substituting random values in place of a and b for the given equation and all the choices. Whichever gives the value equal to the given equation is the solution.
Complete step-by-step answer:
Given Data, ${\left( {{{\text{a}}^2} - {{\text{b}}^2}} \right)^2}$
It is of the form${\left( {{\text{x - y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2} - {\text{2xy}}$, where x = ${{\text{a}}^2}$and y =${{\text{b}}^2}$. Hence we get
$ \Rightarrow {\left( {{{\text{a}}^2}} \right)^2} - 2{{\text{a}}^2}{{\text{b}}^2} + {\left( {{{\text{b}}^2}} \right)^2}$
$ \Rightarrow {{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
Similarly, ${\left( {{\text{x + y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2}{\text{ + 2xy}}$
Now we expand the give options:
$
{\text{A}}{\text{.}}{\left( {\text{b}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{ }} \Rightarrow {{\text{b}}^2}\left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4} - {\text{2a}}{{\text{b}}^3} \\
$
This is not equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
$
{\text{B}}{\text{.}}{\left( {{\text{a + b}}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{ }} \Rightarrow \left( {{{\text{a}}^2} + {{\text{b}}^2} + 2{\text{ab}}} \right)\left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^4} + 2{{\text{a}}^2}{{\text{b}}^2}{\text{ - 2}}{{\text{a}}^3}{\text{b + }}{{\text{b}}^4} - {\text{2a}}{{\text{b}}^3} + {\text{2}}{{\text{a}}^3}{\text{b}} + {\text{2a}}{{\text{b}}^3} - 4{{\text{a}}^2}{{\text{b}}^2} \\
{\text{ }} \Rightarrow {{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4} \\
$
This is equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$. Hence Option B is an answer.
$
{\text{C}}{\text{.}}{\left( {{\text{a - b}}} \right)^2}{\left( {{\text{a - b}}} \right)^2} \\
{\text{ }} \Rightarrow \left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right)\left( {{{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^4} + 2{{\text{a}}^2}{{\text{b}}^2}{\text{ - 2}}{{\text{a}}^3}{\text{b + }}{{\text{b}}^4} - {\text{2a}}{{\text{b}}^3}{\text{ - 2}}{{\text{a}}^3}{\text{b - 2a}}{{\text{b}}^3} + 4{{\text{a}}^2}{{\text{b}}^2} \\
{\text{ }} \Rightarrow {{\text{a}}^4}{\text{ + 6}}{{\text{a}}^2}{{\text{b}}^2} - 4{\text{a}}{{\text{b}}^3} - 4{{\text{a}}^3}{\text{b}} + {{\text{b}}^4} \\
$
This is not equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
$
{\text{D}}{\text{.}}{\left( {\text{a}} \right)^2}{\left( {{\text{a + b}}} \right)^2} \\
{\text{ }} \Rightarrow {{\text{a}}^2}\left( {{{\text{a}}^2} + {{\text{b}}^2} + 2{\text{ab}}} \right) \\
{\text{ }} \Rightarrow {{\text{a}}^2}{{\text{b}}^2} + {{\text{a}}^4}{\text{ + 2}}{{\text{a}}^3}{\text{b}} \\
$
This is not equal to ${{\text{a}}^4} - {\text{2}}{{\text{a}}^2}{{\text{b}}^2} + {{\text{b}}^4}$
Hence Option B is the correct answer.
Note – In order to solve this type of problems the key is to know the formulas ${\left( {{\text{x + y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2}{\text{ + 2xy}}$ and ${\left( {{\text{x - y}}} \right)^2} = {{\text{x}}^2} + {{\text{y}}^2} - {\text{2xy}}$ which are used in the expansion.
This problem can be solved in a simpler way, i.e. by substituting random values in place of a and b for the given equation and all the choices. Whichever gives the value equal to the given equation is the solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


