
How do you simplify the given term ${{\left( 4\times {{10}^{-5}} \right)}^{-6}}$?
Answer
562.5k+ views
Hint: We start solving the problem by equating the given term to a variable. We then make use of the facts that $4={{2}^{2}}$, $10=2\times 5$ to proceed through the problem. We then make use of laws of exponents ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$, ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ to proceed further through the problem. We then make the necessary calculations to get the required answer for the given problem.
Complete step-by-step answer:
According to the problem, we are asked to simplify the given term ${{\left( 4\times {{10}^{-5}} \right)}^{-6}}$.
Let us assume $t={{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ ---(1).
We know that $4={{2}^{2}}$, $10=2\times 5$. Let us use these results in equation (1).
$\Rightarrow t={{\left( {{2}^{2}}\times {{\left( 2\times 5 \right)}^{-5}} \right)}^{-6}}$ ---(2).
From the laws of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (2).
$\Rightarrow t={{\left( {{2}^{2}}\times {{2}^{-5}}\times {{5}^{-5}} \right)}^{-6}}$ ---(3).
From the laws of exponents, we know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$, for $m\ge n$. Let us use this result in equation (3).
$\Rightarrow t={{\left( {{2}^{2-5}}\times {{5}^{-5}} \right)}^{-6}}$.
$\Rightarrow t={{\left( {{2}^{-3}}\times {{5}^{-5}} \right)}^{-6}}$ ---(4).
From the law of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (5).
$\Rightarrow t={{2}^{-3\times -6}}\times {{5}^{-5\times -6}}$.
$\Rightarrow t={{2}^{18}}\times {{5}^{30}}$.
So, we have found the simplified form of the term ${{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ as ${{2}^{18}}\times {{5}^{30}}$.
$\therefore $ The simplified form of the term ${{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ is ${{2}^{18}}\times {{5}^{30}}$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We have $t={{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ ---(5).
From the laws of exponents, we know that ${{a}^{-m}}=\dfrac{1}{{{a}^{m}}}$. Let us use this result in equation (5).
$\Rightarrow t={{\left( \dfrac{4}{{{10}^{5}}} \right)}^{-6}}$ ---(7).
We know that $4={{2}^{2}}$, $10=2\times 5$. Let us use these results in equation (7).
$\Rightarrow t={{\left( \dfrac{{{2}^{2}}}{{{\left( 2\times 5 \right)}^{5}}} \right)}^{-6}}$ ---(8).
From the law of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (8).
$\Rightarrow t={{\left( \dfrac{{{2}^{2}}}{{{2}^{5}}\times {{5}^{5}}} \right)}^{-6}}$ ---(9).
From the law of exponents, we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}=\dfrac{1}{{{a}^{n-m}}}$, for $m$\Rightarrow t={{\left( \dfrac{1}{{{2}^{5-2}}\times {{5}^{5}}} \right)}^{-6}}$.
$\Rightarrow t={{\left( \dfrac{1}{{{2}^{3}}\times {{5}^{5}}} \right)}^{-6}}$ ---(10).
From the laws of exponents, we know that ${{a}^{-m}}=\dfrac{1}{{{a}^{m}}}$. Let us use this result in equation (10).
$\Rightarrow t={{\left( {{2}^{3}}\times {{5}^{5}} \right)}^{6}}$ ---(11).
From the law of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (11).
$\Rightarrow t={{2}^{3\times 6}}\times {{5}^{5\times 6}}$.
$\Rightarrow t={{2}^{18}}\times {{5}^{30}}$.
Complete step-by-step answer:
According to the problem, we are asked to simplify the given term ${{\left( 4\times {{10}^{-5}} \right)}^{-6}}$.
Let us assume $t={{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ ---(1).
We know that $4={{2}^{2}}$, $10=2\times 5$. Let us use these results in equation (1).
$\Rightarrow t={{\left( {{2}^{2}}\times {{\left( 2\times 5 \right)}^{-5}} \right)}^{-6}}$ ---(2).
From the laws of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (2).
$\Rightarrow t={{\left( {{2}^{2}}\times {{2}^{-5}}\times {{5}^{-5}} \right)}^{-6}}$ ---(3).
From the laws of exponents, we know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$, for $m\ge n$. Let us use this result in equation (3).
$\Rightarrow t={{\left( {{2}^{2-5}}\times {{5}^{-5}} \right)}^{-6}}$.
$\Rightarrow t={{\left( {{2}^{-3}}\times {{5}^{-5}} \right)}^{-6}}$ ---(4).
From the law of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (5).
$\Rightarrow t={{2}^{-3\times -6}}\times {{5}^{-5\times -6}}$.
$\Rightarrow t={{2}^{18}}\times {{5}^{30}}$.
So, we have found the simplified form of the term ${{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ as ${{2}^{18}}\times {{5}^{30}}$.
$\therefore $ The simplified form of the term ${{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ is ${{2}^{18}}\times {{5}^{30}}$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We have $t={{\left( 4\times {{10}^{-5}} \right)}^{-6}}$ ---(5).
From the laws of exponents, we know that ${{a}^{-m}}=\dfrac{1}{{{a}^{m}}}$. Let us use this result in equation (5).
$\Rightarrow t={{\left( \dfrac{4}{{{10}^{5}}} \right)}^{-6}}$ ---(7).
We know that $4={{2}^{2}}$, $10=2\times 5$. Let us use these results in equation (7).
$\Rightarrow t={{\left( \dfrac{{{2}^{2}}}{{{\left( 2\times 5 \right)}^{5}}} \right)}^{-6}}$ ---(8).
From the law of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (8).
$\Rightarrow t={{\left( \dfrac{{{2}^{2}}}{{{2}^{5}}\times {{5}^{5}}} \right)}^{-6}}$ ---(9).
From the law of exponents, we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}=\dfrac{1}{{{a}^{n-m}}}$, for $m
$\Rightarrow t={{\left( \dfrac{1}{{{2}^{3}}\times {{5}^{5}}} \right)}^{-6}}$ ---(10).
From the laws of exponents, we know that ${{a}^{-m}}=\dfrac{1}{{{a}^{m}}}$. Let us use this result in equation (10).
$\Rightarrow t={{\left( {{2}^{3}}\times {{5}^{5}} \right)}^{6}}$ ---(11).
From the law of exponents, we know that ${{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}$. Let us use this result in equation (11).
$\Rightarrow t={{2}^{3\times 6}}\times {{5}^{5\times 6}}$.
$\Rightarrow t={{2}^{18}}\times {{5}^{30}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

