
Simplify the given sum of matrices: $\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$.
Answer
510.6k+ views
Hint: We start solving the problem by assigning a variable matrix for the given sum of matrices. We do multiplication wherever required in both of the matrices. We make use of the sum of the matrices to get all in a single matrix. We make use of trigonometric identities to get the final result.
Complete step by step answer:
Given that we need to find the value of sum of the matrices $\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$. Let us assume the sum is ‘A’.
We have got the value of $A=\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$ ---(1).
We know that when a variable or function is multiplied to matrix, it multiplies with each and every element of the matrix i.e., $x\times \left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
x\times a & x\times b \\
x\times c & x\times d \\
\end{matrix} \right]$.
We have got the value of $A=\left[ \begin{matrix}
\cos \theta \times \cos \theta & \sin \theta \times \cos \theta \\
-\sin \theta \times \cos \theta & \cos \theta \times \cos \theta \\
\end{matrix} \right]+\left[ \begin{matrix}
\sin \theta \times \sin \theta & -\cos \theta \times \sin \theta \\
\cos \theta \times \sin \theta & \sin \theta \times \sin \theta \\
\end{matrix} \right]$.
We have got the value of $A=\left[ \begin{matrix}
{{\cos }^{2}}\theta & \sin \theta .\cos \theta \\
-\sin \theta .\cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]+\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\cos \theta .\sin \theta \\
\cos \theta .\sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]$ ---(2).
We know that the sum of two matrices is defined as the sum of corresponding elements from each matrix i.e., $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]+\left[ \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right]=\left[ \begin{matrix}
a+p & b+q \\
c+r & d+s \\
\end{matrix} \right]$. We use this result in equation (2).
We have got the value of $A=\left[ \begin{matrix}
{{\cos }^{2}}\theta +{{\sin }^{2}}\theta & \sin \theta .\cos \theta -\cos \theta .\sin \theta \\
-\sin \theta .\cos \theta +\cos \theta .\sin \theta & {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \\
\end{matrix} \right]$ ---(3).
We know that ${{\cos }^{2}}A+{{\sin }^{2}}A=1$ and $\sin A\cos A=\cos A\sin A$. We use these results in equation (3).
We have got the value of $A=\left[ \begin{matrix}
1 & \sin \theta .\cos \theta -\sin \theta .\cos \theta \\
-\sin \theta .\cos \theta +\sin \theta .\cos \theta & 1 \\
\end{matrix} \right]$.
We have got the value of $A=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$.
We know that in an identity matrix, the elements in the principal diagonal of matrix are one and all the other elements in the matrix are zero.
We have got the value of A = I.
We have found the value of the sum of the matrices $\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$ as Identity matrix ‘I’.
∴ The value of the sum of the matrices $\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$ is Identity matrix ‘I’.
Note: We should not multiply some elements of the matrix while making multiplication of the matrix. We should not make improper multiplications like multiplying the first matrix with $\sin \theta $ and another with $\cos \theta $. We should not know that the Identity matrix is a special matrix in a scalar matrix which has the value of all principal diagonal as 1.
Complete step by step answer:
Given that we need to find the value of sum of the matrices $\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$. Let us assume the sum is ‘A’.
We have got the value of $A=\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$ ---(1).
We know that when a variable or function is multiplied to matrix, it multiplies with each and every element of the matrix i.e., $x\times \left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
x\times a & x\times b \\
x\times c & x\times d \\
\end{matrix} \right]$.
We have got the value of $A=\left[ \begin{matrix}
\cos \theta \times \cos \theta & \sin \theta \times \cos \theta \\
-\sin \theta \times \cos \theta & \cos \theta \times \cos \theta \\
\end{matrix} \right]+\left[ \begin{matrix}
\sin \theta \times \sin \theta & -\cos \theta \times \sin \theta \\
\cos \theta \times \sin \theta & \sin \theta \times \sin \theta \\
\end{matrix} \right]$.
We have got the value of $A=\left[ \begin{matrix}
{{\cos }^{2}}\theta & \sin \theta .\cos \theta \\
-\sin \theta .\cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]+\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\cos \theta .\sin \theta \\
\cos \theta .\sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]$ ---(2).
We know that the sum of two matrices is defined as the sum of corresponding elements from each matrix i.e., $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]+\left[ \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right]=\left[ \begin{matrix}
a+p & b+q \\
c+r & d+s \\
\end{matrix} \right]$. We use this result in equation (2).
We have got the value of $A=\left[ \begin{matrix}
{{\cos }^{2}}\theta +{{\sin }^{2}}\theta & \sin \theta .\cos \theta -\cos \theta .\sin \theta \\
-\sin \theta .\cos \theta +\cos \theta .\sin \theta & {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \\
\end{matrix} \right]$ ---(3).
We know that ${{\cos }^{2}}A+{{\sin }^{2}}A=1$ and $\sin A\cos A=\cos A\sin A$. We use these results in equation (3).
We have got the value of $A=\left[ \begin{matrix}
1 & \sin \theta .\cos \theta -\sin \theta .\cos \theta \\
-\sin \theta .\cos \theta +\sin \theta .\cos \theta & 1 \\
\end{matrix} \right]$.
We have got the value of $A=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$.
We know that in an identity matrix, the elements in the principal diagonal of matrix are one and all the other elements in the matrix are zero.
We have got the value of A = I.
We have found the value of the sum of the matrices $\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$ as Identity matrix ‘I’.
∴ The value of the sum of the matrices $\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]$ is Identity matrix ‘I’.
Note: We should not multiply some elements of the matrix while making multiplication of the matrix. We should not make improper multiplications like multiplying the first matrix with $\sin \theta $ and another with $\cos \theta $. We should not know that the Identity matrix is a special matrix in a scalar matrix which has the value of all principal diagonal as 1.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
