
How do you simplify the given sum: $\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$?
Answer
560.7k+ views
Hint: We start solving the problem by equating the given sum to a variable. We then make use of the fact that $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ to proceed through the problem. We then make the necessary calculations and then make use of the fact that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $ and $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ to proceed further through the problem. We then make the necessary calculations and make use of the fact that $1+{{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}$, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, $\sec \theta =\dfrac{1}{\cos \theta }$ and $\dfrac{1}{\sin x}=\operatorname{cosec}x$ to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the result of the given sum: $\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$.
Let us assume $d=\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$ ---(1).
We know that $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$. Let us use these results in equation (2).
$\Rightarrow d=\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}+\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\sin }^{2}}\dfrac{x}{2}}$.
$\Rightarrow d=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}$ ---(2).
We know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $ and $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $. Let us use these results in equation (2).
$\Rightarrow d=\tan \dfrac{x}{2}+\cot \dfrac{x}{2}$ ---(3).
We know that $\cot \theta =\dfrac{1}{\tan \theta }$. Let us use this result in equation (3).
$\Rightarrow d=\tan \dfrac{x}{2}+\dfrac{1}{\tan \dfrac{x}{2}}$.
$\Rightarrow d=\dfrac{{{\tan }^{2}}\dfrac{x}{2}+1}{\tan \dfrac{x}{2}}$ ---(4).
We know that $1+{{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}$. Let us use this result in equation (4).
$\Rightarrow d=\dfrac{{{\sec }^{2}}\dfrac{x}{2}}{\tan \dfrac{x}{2}}$ ---(5).
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Let us use these results in equation (5).
$\Rightarrow d=\dfrac{\dfrac{1}{{{\cos }^{2}}\dfrac{x}{2}}}{\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}$.
$\Rightarrow d=\dfrac{1}{\sin \dfrac{x}{2}\cos \dfrac{x}{2}}$.
$\Rightarrow d=\dfrac{2}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}$ ---(6).
We know that $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$. Let us use this result in equation (6).
$\Rightarrow d=\dfrac{2}{\sin x}$ ---(7).
We know that $\dfrac{1}{\sin x}=\operatorname{cosec}x$. Let us use this result in equation (7).
$\Rightarrow d=2\operatorname{cosec}x$.
So, we have found the simplified form of the given sum $\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$ as $2\operatorname{cosec}x$.
$\therefore $ The simplified form of the given sum $\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$ is $2\operatorname{cosec}x$.
Note:
We can also solve the given problem as shown below:
We have given $d=\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$.
$\Rightarrow d=\dfrac{\sin x\left( 1-\cos x \right)+\sin x\left( 1+\cos x \right)}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$.
$\Rightarrow d=\dfrac{\sin x-\sin x\cos x+\sin x+\sin x\cos x}{1-\cos x+\cos x-{{\cos }^{2}}x}$.
$\Rightarrow d=\dfrac{2\sin x}{1-{{\cos }^{2}}x}$ ---(8).
We know that ${{\sin }^{2}}x=1-{{\cos }^{2}}x$. Let us use this result in equation (8).
$\Rightarrow d=\dfrac{2\sin x}{{{\sin }^{2}}x}$.
$\Rightarrow d=\dfrac{2}{\sin x}$ ---(9).
We know that $\dfrac{1}{\sin x}=\operatorname{cosec}x$. Let us use this result in equation (9).
$\Rightarrow d=2\operatorname{cosec}x$.
Complete step by step answer:
According to the problem, we are asked to find the result of the given sum: $\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$.
Let us assume $d=\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$ ---(1).
We know that $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$. Let us use these results in equation (2).
$\Rightarrow d=\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}+\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\sin }^{2}}\dfrac{x}{2}}$.
$\Rightarrow d=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}$ ---(2).
We know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $ and $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $. Let us use these results in equation (2).
$\Rightarrow d=\tan \dfrac{x}{2}+\cot \dfrac{x}{2}$ ---(3).
We know that $\cot \theta =\dfrac{1}{\tan \theta }$. Let us use this result in equation (3).
$\Rightarrow d=\tan \dfrac{x}{2}+\dfrac{1}{\tan \dfrac{x}{2}}$.
$\Rightarrow d=\dfrac{{{\tan }^{2}}\dfrac{x}{2}+1}{\tan \dfrac{x}{2}}$ ---(4).
We know that $1+{{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}$. Let us use this result in equation (4).
$\Rightarrow d=\dfrac{{{\sec }^{2}}\dfrac{x}{2}}{\tan \dfrac{x}{2}}$ ---(5).
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Let us use these results in equation (5).
$\Rightarrow d=\dfrac{\dfrac{1}{{{\cos }^{2}}\dfrac{x}{2}}}{\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}$.
$\Rightarrow d=\dfrac{1}{\sin \dfrac{x}{2}\cos \dfrac{x}{2}}$.
$\Rightarrow d=\dfrac{2}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}$ ---(6).
We know that $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$. Let us use this result in equation (6).
$\Rightarrow d=\dfrac{2}{\sin x}$ ---(7).
We know that $\dfrac{1}{\sin x}=\operatorname{cosec}x$. Let us use this result in equation (7).
$\Rightarrow d=2\operatorname{cosec}x$.
So, we have found the simplified form of the given sum $\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$ as $2\operatorname{cosec}x$.
$\therefore $ The simplified form of the given sum $\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$ is $2\operatorname{cosec}x$.
Note:
We can also solve the given problem as shown below:
We have given $d=\dfrac{\sin x}{1+\cos x}+\dfrac{\sin x}{1-\cos x}$.
$\Rightarrow d=\dfrac{\sin x\left( 1-\cos x \right)+\sin x\left( 1+\cos x \right)}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$.
$\Rightarrow d=\dfrac{\sin x-\sin x\cos x+\sin x+\sin x\cos x}{1-\cos x+\cos x-{{\cos }^{2}}x}$.
$\Rightarrow d=\dfrac{2\sin x}{1-{{\cos }^{2}}x}$ ---(8).
We know that ${{\sin }^{2}}x=1-{{\cos }^{2}}x$. Let us use this result in equation (8).
$\Rightarrow d=\dfrac{2\sin x}{{{\sin }^{2}}x}$.
$\Rightarrow d=\dfrac{2}{\sin x}$ ---(9).
We know that $\dfrac{1}{\sin x}=\operatorname{cosec}x$. Let us use this result in equation (9).
$\Rightarrow d=2\operatorname{cosec}x$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

