
Simplify the given logarithmic expression:${x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}$.
Answer
615.6k+ views
Hint: Here, we will simplify the given expression by using the properties of logarithms like $\log (a.b) = \log a + \log b$ and \[\log {a^b} = b\log a\] to find the value of x.
Complete step-by-step answer:
Consider the given expression as X and take $\log $both sides,
$
X = {x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}} \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
$
Here we can use $\log (a.b) = \log a + \log b$
\[
\log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}) + \log ({y^{\log z - \log x}}) + \log ({z^{\log x - \log y}}) \\
\Rightarrow \log X = (\log y - \log z)\log (x) + (\log z - \log x)\log (y) + (\log x - \log y)\log (z){\text{ }}[\because \log {a^b} = b\log a] \\
\Rightarrow \log X = \log y\log x - \log z\log x + \log z\log y - \log x\log y + \log x\log z - \log y\log z \\
\Rightarrow \log X = 0 \\
\Rightarrow X = {10^0}{\text{ }}[{\text{taking anti - log}}] \\
\Rightarrow X = 1 \\
\]
Hence, the value of the given expression is 1.
Note: If the base of the logarithm is not given, we can consider the base as 10 i.e. common logarithm. These are the circular questions. In this question we are playing with x, y, z. We can add one-two more variables and form a bigger question. Nevertheless, the concept to solve the problem will not change.
Complete step-by-step answer:
Consider the given expression as X and take $\log $both sides,
$
X = {x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}} \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
$
Here we can use $\log (a.b) = \log a + \log b$
\[
\log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}) + \log ({y^{\log z - \log x}}) + \log ({z^{\log x - \log y}}) \\
\Rightarrow \log X = (\log y - \log z)\log (x) + (\log z - \log x)\log (y) + (\log x - \log y)\log (z){\text{ }}[\because \log {a^b} = b\log a] \\
\Rightarrow \log X = \log y\log x - \log z\log x + \log z\log y - \log x\log y + \log x\log z - \log y\log z \\
\Rightarrow \log X = 0 \\
\Rightarrow X = {10^0}{\text{ }}[{\text{taking anti - log}}] \\
\Rightarrow X = 1 \\
\]
Hence, the value of the given expression is 1.
Note: If the base of the logarithm is not given, we can consider the base as 10 i.e. common logarithm. These are the circular questions. In this question we are playing with x, y, z. We can add one-two more variables and form a bigger question. Nevertheless, the concept to solve the problem will not change.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

