
Simplify the given logarithmic expression:${x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}$.
Answer
518.7k+ views
Hint: Here, we will simplify the given expression by using the properties of logarithms like $\log (a.b) = \log a + \log b$ and \[\log {a^b} = b\log a\] to find the value of x.
Complete step-by-step answer:
Consider the given expression as X and take $\log $both sides,
$
X = {x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}} \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
$
Here we can use $\log (a.b) = \log a + \log b$
\[
\log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}) + \log ({y^{\log z - \log x}}) + \log ({z^{\log x - \log y}}) \\
\Rightarrow \log X = (\log y - \log z)\log (x) + (\log z - \log x)\log (y) + (\log x - \log y)\log (z){\text{ }}[\because \log {a^b} = b\log a] \\
\Rightarrow \log X = \log y\log x - \log z\log x + \log z\log y - \log x\log y + \log x\log z - \log y\log z \\
\Rightarrow \log X = 0 \\
\Rightarrow X = {10^0}{\text{ }}[{\text{taking anti - log}}] \\
\Rightarrow X = 1 \\
\]
Hence, the value of the given expression is 1.
Note: If the base of the logarithm is not given, we can consider the base as 10 i.e. common logarithm. These are the circular questions. In this question we are playing with x, y, z. We can add one-two more variables and form a bigger question. Nevertheless, the concept to solve the problem will not change.
Complete step-by-step answer:
Consider the given expression as X and take $\log $both sides,
$
X = {x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}} \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
$
Here we can use $\log (a.b) = \log a + \log b$
\[
\log X = \log ({x^{\log y - \log z}}.{y^{\log z - \log x}}.{z^{\log x - \log y}}) \\
\Rightarrow \log X = \log ({x^{\log y - \log z}}) + \log ({y^{\log z - \log x}}) + \log ({z^{\log x - \log y}}) \\
\Rightarrow \log X = (\log y - \log z)\log (x) + (\log z - \log x)\log (y) + (\log x - \log y)\log (z){\text{ }}[\because \log {a^b} = b\log a] \\
\Rightarrow \log X = \log y\log x - \log z\log x + \log z\log y - \log x\log y + \log x\log z - \log y\log z \\
\Rightarrow \log X = 0 \\
\Rightarrow X = {10^0}{\text{ }}[{\text{taking anti - log}}] \\
\Rightarrow X = 1 \\
\]
Hence, the value of the given expression is 1.
Note: If the base of the logarithm is not given, we can consider the base as 10 i.e. common logarithm. These are the circular questions. In this question we are playing with x, y, z. We can add one-two more variables and form a bigger question. Nevertheless, the concept to solve the problem will not change.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
