
Simplify the given expression $\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}$
Answer
586.5k+ views
Hint: Here, we use the concept of imaginary numbers, i.e. $\sqrt{-1}=i$. The unit imaginary number, i, equals the square root of minus 1. Imaginary numbers are not "imaginary", they really exist
Complete step-by-step answer:
We have to simplify $\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}$.
This expression can be written as:
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-5\times 4}{64\times 4}}$
Simplifying, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-5}{64}}$
Writing the terms as product of two numbers, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\sqrt{\dfrac{-5\times 9}{4 \times 4}}+\sqrt{\dfrac{-5}{8 \times 8}}$
Taking square root of the numbers, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\dfrac{3}{4}\sqrt{-5}+\dfrac{1}{8}\sqrt{-5}$
Adding the terms, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\left(\dfrac{3}{4}+\dfrac{1}{8}\right)\sqrt{-5}=\dfrac{7}{8}\sqrt{-5}$
Now, as $\sqrt{-1}=i$, thus,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\dfrac{7\sqrt{5}i}{8}$
Hence, the simplified form of $\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}$ is $\dfrac{7\sqrt{5}i}{8}$.
Note: Imaginary numbers are the numbers that are not real. If we square imaginary numbers, we get negative results. Imaginary numbers can be expressed in the form of real numbers by multiplying them by i.
Complete step-by-step answer:
We have to simplify $\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}$.
This expression can be written as:
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-5\times 4}{64\times 4}}$
Simplifying, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-5}{64}}$
Writing the terms as product of two numbers, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\sqrt{\dfrac{-5\times 9}{4 \times 4}}+\sqrt{\dfrac{-5}{8 \times 8}}$
Taking square root of the numbers, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\dfrac{3}{4}\sqrt{-5}+\dfrac{1}{8}\sqrt{-5}$
Adding the terms, we get,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\left(\dfrac{3}{4}+\dfrac{1}{8}\right)\sqrt{-5}=\dfrac{7}{8}\sqrt{-5}$
Now, as $\sqrt{-1}=i$, thus,
$\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}=\dfrac{7\sqrt{5}i}{8}$
Hence, the simplified form of $\sqrt{\dfrac{-45}{16}}+\sqrt{\dfrac{-20}{256}}$ is $\dfrac{7\sqrt{5}i}{8}$.
Note: Imaginary numbers are the numbers that are not real. If we square imaginary numbers, we get negative results. Imaginary numbers can be expressed in the form of real numbers by multiplying them by i.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


