
Simplify the given expression $3x\left( {{x}^{2}}+1 \right)-\left[ 2x\left( {{x}^{2}}+x-1 \right)+1 \right]-{{x}^{2}}$
\[\begin{align}
& A.{{x}^{3}}-3{{x}^{2}}+x+1 \\
& B.{{x}^{3}}-3{{x}^{2}}+5x-1 \\
& C.{{x}^{3}}+{{x}^{2}}-5x+1 \\
& D.{{x}^{3}}+3{{x}^{2}}+5x-1 \\
\end{align}\]
Answer
572.7k+ views
Hint: To solve this question, we will assume variables for all given terms separately as:
\[\begin{align}
& t=3x\left( {{x}^{2}}+1 \right) \\
& s=2x\left( {{x}^{2}}+x-1 \right)+1 \\
& \text{and }r={{x}^{2}} \\
\end{align}\]
Simplify then using power of multiplication of x formula given as below:
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Finally, we will calculate the value of t-s-r to get the required result.
Complete step by step answer:
We are given the expression as:
\[3x\left( {{x}^{2}}+1 \right)-\left[ 2x\left( {{x}^{2}}+x-1 \right)+1 \right]-{{x}^{2}}\]
We have to simplify this term. If we multiply a power to x to another power x then, it is of the form.
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Where a and b are powers of x.
Consider \[t=3x\left( {{x}^{2}}+1 \right),s=2x\left( {{x}^{2}}+x-1 \right)+1\text{ and }r={{x}^{2}}\]
So, we have to calculate the value of t - s - r.
Using the above stated power of x multiplication in t, we get:
\[\begin{align}
& t=3x\left( {{x}^{2}}+1 \right) \\
& t=3{{x}^{1+2}}+3x \\
& t=3{{x}^{3}}+3x\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Now, again using above stated power of x multiplication in s we get:
\[\begin{align}
& s=2x\left( {{x}^{2}}+x-1 \right)+1 \\
& s=2{{x}^{1+2}}+2{{x}^{1+1}}-2x+1 \\
& s=2{{x}^{3}}+2{{x}^{2}}-2x+1\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, finally using the same above stated power of x multiplication in r we get:
\[r={{x}^{2}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Then finally we have to compute t - s - r.
Substituting the values of t, s and r from equation (i), (ii) and (iii) in above we get:
\[\begin{align}
& t-s-r=3{{x}^{3}}+3x-\left( 2{{x}^{3}}+2{{x}^{2}}-2x+1 \right)-{{x}^{2}} \\
& \Rightarrow 3{{x}^{3}}+3x-2{{x}^{3}}-2{{x}^{2}}+2x-1-{{x}^{2}} \\
& \Rightarrow {{x}^{3}}\left( 3-2 \right)-2{{x}^{2}}-{{x}^{2}}+3x+2x-1 \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+5x-1 \\
\end{align}\]
Therefore, the value of expression $3x\left( {{x}^{2}}+1 \right)-\left[ 2x\left( {{x}^{2}}+x-1 \right)+1 \right]-{{x}^{2}}$ is ${{x}^{3}}-3{{x}^{2}}+5x-1$
So, the correct answer is “Option B”.
Note: Another method to solve this question can be directly solved before assuming any variable. The solution is as below:
Consider $3x\left( {{x}^{2}}+1 \right)-\left[ 2x\left( {{x}^{2}}+x-1 \right)+1 \right]-{{x}^{2}}$ using ${{x}^{a}}{{x}^{b}}={{x}^{a+b}}$ we get:
\[\begin{align}
& \Rightarrow 3{{x}^{3}}+3x-\left( 2{{x}^{3}}+2{{x}^{2}}-2x+1 \right)-{{x}^{2}} \\
& \Rightarrow 3{{x}^{3}}+3x-2{{x}^{3}}-2{{x}^{2}}+2x-1-{{x}^{2}} \\
& \Rightarrow {{x}^{3}}+5x-2{{x}^{2}}-{{x}^{2}}-1 \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+5x-1 \\
\end{align}\]
Which is option B. So, the answer is the same.
\[\begin{align}
& t=3x\left( {{x}^{2}}+1 \right) \\
& s=2x\left( {{x}^{2}}+x-1 \right)+1 \\
& \text{and }r={{x}^{2}} \\
\end{align}\]
Simplify then using power of multiplication of x formula given as below:
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Finally, we will calculate the value of t-s-r to get the required result.
Complete step by step answer:
We are given the expression as:
\[3x\left( {{x}^{2}}+1 \right)-\left[ 2x\left( {{x}^{2}}+x-1 \right)+1 \right]-{{x}^{2}}\]
We have to simplify this term. If we multiply a power to x to another power x then, it is of the form.
\[{{x}^{a}}{{x}^{b}}={{x}^{a+b}}\]
Where a and b are powers of x.
Consider \[t=3x\left( {{x}^{2}}+1 \right),s=2x\left( {{x}^{2}}+x-1 \right)+1\text{ and }r={{x}^{2}}\]
So, we have to calculate the value of t - s - r.
Using the above stated power of x multiplication in t, we get:
\[\begin{align}
& t=3x\left( {{x}^{2}}+1 \right) \\
& t=3{{x}^{1+2}}+3x \\
& t=3{{x}^{3}}+3x\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Now, again using above stated power of x multiplication in s we get:
\[\begin{align}
& s=2x\left( {{x}^{2}}+x-1 \right)+1 \\
& s=2{{x}^{1+2}}+2{{x}^{1+1}}-2x+1 \\
& s=2{{x}^{3}}+2{{x}^{2}}-2x+1\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, finally using the same above stated power of x multiplication in r we get:
\[r={{x}^{2}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Then finally we have to compute t - s - r.
Substituting the values of t, s and r from equation (i), (ii) and (iii) in above we get:
\[\begin{align}
& t-s-r=3{{x}^{3}}+3x-\left( 2{{x}^{3}}+2{{x}^{2}}-2x+1 \right)-{{x}^{2}} \\
& \Rightarrow 3{{x}^{3}}+3x-2{{x}^{3}}-2{{x}^{2}}+2x-1-{{x}^{2}} \\
& \Rightarrow {{x}^{3}}\left( 3-2 \right)-2{{x}^{2}}-{{x}^{2}}+3x+2x-1 \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+5x-1 \\
\end{align}\]
Therefore, the value of expression $3x\left( {{x}^{2}}+1 \right)-\left[ 2x\left( {{x}^{2}}+x-1 \right)+1 \right]-{{x}^{2}}$ is ${{x}^{3}}-3{{x}^{2}}+5x-1$
So, the correct answer is “Option B”.
Note: Another method to solve this question can be directly solved before assuming any variable. The solution is as below:
Consider $3x\left( {{x}^{2}}+1 \right)-\left[ 2x\left( {{x}^{2}}+x-1 \right)+1 \right]-{{x}^{2}}$ using ${{x}^{a}}{{x}^{b}}={{x}^{a+b}}$ we get:
\[\begin{align}
& \Rightarrow 3{{x}^{3}}+3x-\left( 2{{x}^{3}}+2{{x}^{2}}-2x+1 \right)-{{x}^{2}} \\
& \Rightarrow 3{{x}^{3}}+3x-2{{x}^{3}}-2{{x}^{2}}+2x-1-{{x}^{2}} \\
& \Rightarrow {{x}^{3}}+5x-2{{x}^{2}}-{{x}^{2}}-1 \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+5x-1 \\
\end{align}\]
Which is option B. So, the answer is the same.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

