
Simplify the given expression:
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$
Answer
621.6k+ views
Hint: In the above given question, we are asked to evaluate the expression ${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$. While evaluation, do not try to jump over the steps, as if any step is missed the solution so obtained will not be appropriate. Also remember the rule that in multiplication if the base is the same, the powers are added.
We have the given expression as
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$
Now we know that, we can write
${(27{x^3})^{\dfrac{1}{3}}}$as${({(3x)^3})^{\dfrac{1}{3}}}$ … (1)
And ${(81{x^3})^{\dfrac{1}{3}}}$as${({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$ … (2)
Therefore, from these we can rewrite the given expression as
$ \Rightarrow {(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {({(3x)^3})^{\dfrac{1}{3}}} \times {({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$
$ = {(3x)^{\dfrac{3}{3}}} \times {(3)^{\dfrac{4}{3}}} \times {(y)^{\dfrac{3}{3}}}$
$ = {(3x)^1} \times {(3)^{\dfrac{4}{3}}} \times {(y)^1}$
After solving the expression, we get
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = 3x \times 3 \times {(3)^{\dfrac{1}{3}}} \times y$
$ = x \times {3^2} \times {3^{\dfrac{1}{3}}} \times y$
$ = x \times {3^{\dfrac{{6 + 1}}{3}}} \times y$
$ = x \times {3^{\dfrac{7}{3}}} \times y$
$ = {3^{\dfrac{7}{3}}}xy $
Hence, the required solution is:
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {3^{\dfrac{7}{3}}}xy$
Note: Whenever we face such types of problems, break the given terms in the simplest form possible and then evaluate the given expression to obtain an optimum solution.
We have the given expression as
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$
Now we know that, we can write
${(27{x^3})^{\dfrac{1}{3}}}$as${({(3x)^3})^{\dfrac{1}{3}}}$ … (1)
And ${(81{x^3})^{\dfrac{1}{3}}}$as${({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$ … (2)
Therefore, from these we can rewrite the given expression as
$ \Rightarrow {(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {({(3x)^3})^{\dfrac{1}{3}}} \times {({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$
$ = {(3x)^{\dfrac{3}{3}}} \times {(3)^{\dfrac{4}{3}}} \times {(y)^{\dfrac{3}{3}}}$
$ = {(3x)^1} \times {(3)^{\dfrac{4}{3}}} \times {(y)^1}$
After solving the expression, we get
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = 3x \times 3 \times {(3)^{\dfrac{1}{3}}} \times y$
$ = x \times {3^2} \times {3^{\dfrac{1}{3}}} \times y$
$ = x \times {3^{\dfrac{{6 + 1}}{3}}} \times y$
$ = x \times {3^{\dfrac{7}{3}}} \times y$
$ = {3^{\dfrac{7}{3}}}xy $
Hence, the required solution is:
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {3^{\dfrac{7}{3}}}xy$
Note: Whenever we face such types of problems, break the given terms in the simplest form possible and then evaluate the given expression to obtain an optimum solution.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


