
Simplify the given expression:
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$
Answer
606k+ views
Hint: In the above given question, we are asked to evaluate the expression ${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$. While evaluation, do not try to jump over the steps, as if any step is missed the solution so obtained will not be appropriate. Also remember the rule that in multiplication if the base is the same, the powers are added.
We have the given expression as
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$
Now we know that, we can write
${(27{x^3})^{\dfrac{1}{3}}}$as${({(3x)^3})^{\dfrac{1}{3}}}$ … (1)
And ${(81{x^3})^{\dfrac{1}{3}}}$as${({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$ … (2)
Therefore, from these we can rewrite the given expression as
$ \Rightarrow {(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {({(3x)^3})^{\dfrac{1}{3}}} \times {({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$
$ = {(3x)^{\dfrac{3}{3}}} \times {(3)^{\dfrac{4}{3}}} \times {(y)^{\dfrac{3}{3}}}$
$ = {(3x)^1} \times {(3)^{\dfrac{4}{3}}} \times {(y)^1}$
After solving the expression, we get
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = 3x \times 3 \times {(3)^{\dfrac{1}{3}}} \times y$
$ = x \times {3^2} \times {3^{\dfrac{1}{3}}} \times y$
$ = x \times {3^{\dfrac{{6 + 1}}{3}}} \times y$
$ = x \times {3^{\dfrac{7}{3}}} \times y$
$ = {3^{\dfrac{7}{3}}}xy $
Hence, the required solution is:
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {3^{\dfrac{7}{3}}}xy$
Note: Whenever we face such types of problems, break the given terms in the simplest form possible and then evaluate the given expression to obtain an optimum solution.
We have the given expression as
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}}$
Now we know that, we can write
${(27{x^3})^{\dfrac{1}{3}}}$as${({(3x)^3})^{\dfrac{1}{3}}}$ … (1)
And ${(81{x^3})^{\dfrac{1}{3}}}$as${({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$ … (2)
Therefore, from these we can rewrite the given expression as
$ \Rightarrow {(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {({(3x)^3})^{\dfrac{1}{3}}} \times {({(3)^4})^{\dfrac{1}{3}}} \times {({(y)^3})^{\dfrac{1}{3}}}$
$ = {(3x)^{\dfrac{3}{3}}} \times {(3)^{\dfrac{4}{3}}} \times {(y)^{\dfrac{3}{3}}}$
$ = {(3x)^1} \times {(3)^{\dfrac{4}{3}}} \times {(y)^1}$
After solving the expression, we get
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = {(3x)^1} \times {(3)^1}{(3)^{\dfrac{1}{3}}} \times {(y)^1}$
$ = 3x \times 3 \times {(3)^{\dfrac{1}{3}}} \times y$
$ = x \times {3^2} \times {3^{\dfrac{1}{3}}} \times y$
$ = x \times {3^{\dfrac{{6 + 1}}{3}}} \times y$
$ = x \times {3^{\dfrac{7}{3}}} \times y$
$ = {3^{\dfrac{7}{3}}}xy $
Hence, the required solution is:
${(27{x^3})^{\dfrac{1}{3}}} \times {(81{y^3})^{\dfrac{1}{3}}} = {3^{\dfrac{7}{3}}}xy$
Note: Whenever we face such types of problems, break the given terms in the simplest form possible and then evaluate the given expression to obtain an optimum solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


