
How do you simplify the given division $ \dfrac{\sqrt{64}}{\sqrt{81}} $ ?
Answer
562.5k+ views
Hint: We start solving the problem by equating the given division to a variable. We then make use of the fact that $ \sqrt{a}={{a}^{\dfrac{1}{2}}} $ to proceed through the problem. We then make the necessary calculations and make use of the fact that $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ to proceed further through the problem. We then make the necessary calculations to get the required answer for the given problem.
Complete step by step answer:
According to the problem, we are asked to find the result of the given division $ \dfrac{\sqrt{64}}{\sqrt{81}} $ .
Let us assume $ d=\dfrac{\sqrt{64}}{\sqrt{81}} $ ---(1).
We know that $ \sqrt{a}={{a}^{\dfrac{1}{2}}} $ . Let us use this result in equation (1).
$ \Rightarrow d=\dfrac{{{\left( 64 \right)}^{\dfrac{1}{2}}}}{{{\left( 81 \right)}^{\dfrac{1}{2}}}} $ ---(2).
We know that $ 64={{8}^{2}} $ and $ 81={{9}^{2}} $ . Let us use these results in equation (2).
$ \Rightarrow d=\dfrac{{{\left( {{8}^{2}} \right)}^{\dfrac{1}{2}}}}{{{\left( {{9}^{2}} \right)}^{\dfrac{1}{2}}}} $ ---(3).
From laws of exponents, we know that $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ . Let us use this result in equation (3).
$ \Rightarrow d=\dfrac{\left( {{8}^{2\times \dfrac{1}{2}}} \right)}{\left( {{9}^{2\times \dfrac{1}{2}}} \right)} $ .
$ \Rightarrow d=\dfrac{\left( {{8}^{1}} \right)}{\left( {{9}^{1}} \right)} $ .
$ \Rightarrow d=\dfrac{8}{9} $ .
So, we have found the simplified form of the given division $ \dfrac{\sqrt{64}}{\sqrt{81}} $ as $ \dfrac{8}{9} $ .
$ \therefore $ The simplified form of the given division $ \dfrac{\sqrt{64}}{\sqrt{81}} $ is $ \dfrac{8}{9} $ .
Note:
We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
We have $ d=\dfrac{\sqrt{64}}{\sqrt{81}} $ ---(4).
We know that $ {{2}^{6}}=64 $ , $ {{3}^{4}}=81 $ . Let us use these results in equation (4).
$ \Rightarrow d=\dfrac{\sqrt{{{2}^{6}}}}{\sqrt{{{3}^{4}}}} $ ---(5).
We know that $ \sqrt{a}={{a}^{\dfrac{1}{2}}} $ . Let us use this result in equation (5).
$ \Rightarrow d=\dfrac{{{\left( {{2}^{6}} \right)}^{\dfrac{1}{2}}}}{{{\left( {{3}^{4}} \right)}^{\dfrac{1}{2}}}} $ ---(6).
From laws of exponents, we know that $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ . Let us use this result in equation (3).
$ \Rightarrow d=\dfrac{\left( {{2}^{6\times \dfrac{1}{2}}} \right)}{\left( {{3}^{4\times \dfrac{1}{2}}} \right)} $ .
$ \Rightarrow d=\dfrac{\left( {{2}^{3}} \right)}{\left( {{3}^{2}} \right)} $ ---(7).
We know that $ {{2}^{3}}=8 $ , $ {{3}^{2}}=9 $ . Let us use these results in equation (7).
$ \Rightarrow d=\dfrac{8}{9} $ .
Complete step by step answer:
According to the problem, we are asked to find the result of the given division $ \dfrac{\sqrt{64}}{\sqrt{81}} $ .
Let us assume $ d=\dfrac{\sqrt{64}}{\sqrt{81}} $ ---(1).
We know that $ \sqrt{a}={{a}^{\dfrac{1}{2}}} $ . Let us use this result in equation (1).
$ \Rightarrow d=\dfrac{{{\left( 64 \right)}^{\dfrac{1}{2}}}}{{{\left( 81 \right)}^{\dfrac{1}{2}}}} $ ---(2).
We know that $ 64={{8}^{2}} $ and $ 81={{9}^{2}} $ . Let us use these results in equation (2).
$ \Rightarrow d=\dfrac{{{\left( {{8}^{2}} \right)}^{\dfrac{1}{2}}}}{{{\left( {{9}^{2}} \right)}^{\dfrac{1}{2}}}} $ ---(3).
From laws of exponents, we know that $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ . Let us use this result in equation (3).
$ \Rightarrow d=\dfrac{\left( {{8}^{2\times \dfrac{1}{2}}} \right)}{\left( {{9}^{2\times \dfrac{1}{2}}} \right)} $ .
$ \Rightarrow d=\dfrac{\left( {{8}^{1}} \right)}{\left( {{9}^{1}} \right)} $ .
$ \Rightarrow d=\dfrac{8}{9} $ .
So, we have found the simplified form of the given division $ \dfrac{\sqrt{64}}{\sqrt{81}} $ as $ \dfrac{8}{9} $ .
$ \therefore $ The simplified form of the given division $ \dfrac{\sqrt{64}}{\sqrt{81}} $ is $ \dfrac{8}{9} $ .
Note:
We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
We have $ d=\dfrac{\sqrt{64}}{\sqrt{81}} $ ---(4).
We know that $ {{2}^{6}}=64 $ , $ {{3}^{4}}=81 $ . Let us use these results in equation (4).
$ \Rightarrow d=\dfrac{\sqrt{{{2}^{6}}}}{\sqrt{{{3}^{4}}}} $ ---(5).
We know that $ \sqrt{a}={{a}^{\dfrac{1}{2}}} $ . Let us use this result in equation (5).
$ \Rightarrow d=\dfrac{{{\left( {{2}^{6}} \right)}^{\dfrac{1}{2}}}}{{{\left( {{3}^{4}} \right)}^{\dfrac{1}{2}}}} $ ---(6).
From laws of exponents, we know that $ {{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}} $ . Let us use this result in equation (3).
$ \Rightarrow d=\dfrac{\left( {{2}^{6\times \dfrac{1}{2}}} \right)}{\left( {{3}^{4\times \dfrac{1}{2}}} \right)} $ .
$ \Rightarrow d=\dfrac{\left( {{2}^{3}} \right)}{\left( {{3}^{2}} \right)} $ ---(7).
We know that $ {{2}^{3}}=8 $ , $ {{3}^{2}}=9 $ . Let us use these results in equation (7).
$ \Rightarrow d=\dfrac{8}{9} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

