
Simplify the following using identities.
a.\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]
b.\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]
c.\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]
d.\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]
Answer
560.4k+ views
Hint: Firstly, observe the question and then use the identity \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\] , \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\] , \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\] . With the formula we can easily simplify this equation by knowing all the variables i.e a and b.
Formula Used: Here, we can use the formula according to the requirement of the question\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\] , \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\] , \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Complete step-by-step answer:
Now, we will begin with:
(a)\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]
First, split 109 and 91 in factors of 100.
\[ \Rightarrow {\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\]
Now considering left hand side , \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = \]\[{\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
From here, we can clearly see that \[a = 100\] and \[b = 9\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 2\left[ {{a^2} + {b^2}} \right]\]
\[ \Rightarrow 2\left[ {{{\left( {100} \right)}^2} + {{\left( 9 \right)}^2}} \right]\]
By opening the squares:
\[ \Rightarrow 2\left[ {10000 + 81} \right]\]
On further simplifying:
\[ \Rightarrow 2\left[ {10081} \right]\]
We get, \[ \Rightarrow 20162\]
\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]\[ \Rightarrow 20162\]
(b)\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]
As, it is clearly visible that is \[{a^2} - {b^2}\] and hence we can use the identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] .
Now considering left hand side , \[{a^2} - {b^2}\]\[ = {\left( {200} \right)^2} - {\left( {100} \right)^2}\]
From here, we can clearly see that \[a = 200\] and \[b = 100\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right)\]
\[ \Rightarrow \left( {200 - 100} \right)\left( {200 + 100} \right)\]
On simplifying:
\[ \Rightarrow 100 * 300\]
We get, \[ \Rightarrow 30000\]
\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]\[ \Rightarrow 30000\]
(c)\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]
First, of all split 1025 and 975 in factors of 1000.
\[ \Rightarrow {\left( {1000 + 25} \right)^2} - {\left( {1000 - 25} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\]
Now considering left hand side , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = \]\[{\left( {1000 + 25} \right)^2} + {\left( {1000 - 25} \right)^2}\]
From here, we can clearly see that \[a = 1000\] and \[b = 25\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 4ab\]
\[ \Rightarrow 4*1000*25\]
By multiplying:
\[ \Rightarrow 100000\]
\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]\[ \Rightarrow 100000\]
(d)\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]
As, it is clearly visible that is \[{a^2} + {b^2}\] and hence we can use the identity \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Now considering left hand side , \[{a^2} + {b^2}\]\[ = {\left( {10} \right)^2} + {\left( {20} \right)^2}\]
From here, we can clearly see that \[a = 10\] and \[b = 20\] .
Put the values of a and b in right hand side of formula \[ = {\left( {a + b} \right)^2} - 2ab\]
\[ \Rightarrow {\left( {10 + 20} \right)^2} - 2 * 10 * 20\]
\[ \Rightarrow {\left( {30} \right)^2} - 2 * 10 * 20\]
On simplifying square,
\[ \Rightarrow 900 - 2 * 10 * 20\]
And on multiplying,
\[ \Rightarrow 900 - 400\]
We get, \[ \Rightarrow 500\]
\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]\[ \Rightarrow 500\]
Note: In this type of question, first of all observe the given statements and calculate the values. Accordingly, implement the identities which are most appropriate.
Formula Used: Here, we can use the formula according to the requirement of the question\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\] , \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\] , \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Complete step-by-step answer:
Now, we will begin with:
(a)\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]
First, split 109 and 91 in factors of 100.
\[ \Rightarrow {\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\]
Now considering left hand side , \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = \]\[{\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
From here, we can clearly see that \[a = 100\] and \[b = 9\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 2\left[ {{a^2} + {b^2}} \right]\]
\[ \Rightarrow 2\left[ {{{\left( {100} \right)}^2} + {{\left( 9 \right)}^2}} \right]\]
By opening the squares:
\[ \Rightarrow 2\left[ {10000 + 81} \right]\]
On further simplifying:
\[ \Rightarrow 2\left[ {10081} \right]\]
We get, \[ \Rightarrow 20162\]
\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]\[ \Rightarrow 20162\]
(b)\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]
As, it is clearly visible that is \[{a^2} - {b^2}\] and hence we can use the identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] .
Now considering left hand side , \[{a^2} - {b^2}\]\[ = {\left( {200} \right)^2} - {\left( {100} \right)^2}\]
From here, we can clearly see that \[a = 200\] and \[b = 100\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right)\]
\[ \Rightarrow \left( {200 - 100} \right)\left( {200 + 100} \right)\]
On simplifying:
\[ \Rightarrow 100 * 300\]
We get, \[ \Rightarrow 30000\]
\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]\[ \Rightarrow 30000\]
(c)\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]
First, of all split 1025 and 975 in factors of 1000.
\[ \Rightarrow {\left( {1000 + 25} \right)^2} - {\left( {1000 - 25} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\]
Now considering left hand side , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = \]\[{\left( {1000 + 25} \right)^2} + {\left( {1000 - 25} \right)^2}\]
From here, we can clearly see that \[a = 1000\] and \[b = 25\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 4ab\]
\[ \Rightarrow 4*1000*25\]
By multiplying:
\[ \Rightarrow 100000\]
\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]\[ \Rightarrow 100000\]
(d)\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]
As, it is clearly visible that is \[{a^2} + {b^2}\] and hence we can use the identity \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Now considering left hand side , \[{a^2} + {b^2}\]\[ = {\left( {10} \right)^2} + {\left( {20} \right)^2}\]
From here, we can clearly see that \[a = 10\] and \[b = 20\] .
Put the values of a and b in right hand side of formula \[ = {\left( {a + b} \right)^2} - 2ab\]
\[ \Rightarrow {\left( {10 + 20} \right)^2} - 2 * 10 * 20\]
\[ \Rightarrow {\left( {30} \right)^2} - 2 * 10 * 20\]
On simplifying square,
\[ \Rightarrow 900 - 2 * 10 * 20\]
And on multiplying,
\[ \Rightarrow 900 - 400\]
We get, \[ \Rightarrow 500\]
\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]\[ \Rightarrow 500\]
Note: In this type of question, first of all observe the given statements and calculate the values. Accordingly, implement the identities which are most appropriate.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

