
Simplify the following using identities.
a.\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]
b.\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]
c.\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]
d.\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]
Answer
574.5k+ views
Hint: Firstly, observe the question and then use the identity \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\] , \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\] , \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\] . With the formula we can easily simplify this equation by knowing all the variables i.e a and b.
Formula Used: Here, we can use the formula according to the requirement of the question\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\] , \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\] , \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Complete step-by-step answer:
Now, we will begin with:
(a)\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]
First, split 109 and 91 in factors of 100.
\[ \Rightarrow {\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\]
Now considering left hand side , \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = \]\[{\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
From here, we can clearly see that \[a = 100\] and \[b = 9\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 2\left[ {{a^2} + {b^2}} \right]\]
\[ \Rightarrow 2\left[ {{{\left( {100} \right)}^2} + {{\left( 9 \right)}^2}} \right]\]
By opening the squares:
\[ \Rightarrow 2\left[ {10000 + 81} \right]\]
On further simplifying:
\[ \Rightarrow 2\left[ {10081} \right]\]
We get, \[ \Rightarrow 20162\]
\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]\[ \Rightarrow 20162\]
(b)\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]
As, it is clearly visible that is \[{a^2} - {b^2}\] and hence we can use the identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] .
Now considering left hand side , \[{a^2} - {b^2}\]\[ = {\left( {200} \right)^2} - {\left( {100} \right)^2}\]
From here, we can clearly see that \[a = 200\] and \[b = 100\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right)\]
\[ \Rightarrow \left( {200 - 100} \right)\left( {200 + 100} \right)\]
On simplifying:
\[ \Rightarrow 100 * 300\]
We get, \[ \Rightarrow 30000\]
\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]\[ \Rightarrow 30000\]
(c)\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]
First, of all split 1025 and 975 in factors of 1000.
\[ \Rightarrow {\left( {1000 + 25} \right)^2} - {\left( {1000 - 25} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\]
Now considering left hand side , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = \]\[{\left( {1000 + 25} \right)^2} + {\left( {1000 - 25} \right)^2}\]
From here, we can clearly see that \[a = 1000\] and \[b = 25\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 4ab\]
\[ \Rightarrow 4*1000*25\]
By multiplying:
\[ \Rightarrow 100000\]
\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]\[ \Rightarrow 100000\]
(d)\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]
As, it is clearly visible that is \[{a^2} + {b^2}\] and hence we can use the identity \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Now considering left hand side , \[{a^2} + {b^2}\]\[ = {\left( {10} \right)^2} + {\left( {20} \right)^2}\]
From here, we can clearly see that \[a = 10\] and \[b = 20\] .
Put the values of a and b in right hand side of formula \[ = {\left( {a + b} \right)^2} - 2ab\]
\[ \Rightarrow {\left( {10 + 20} \right)^2} - 2 * 10 * 20\]
\[ \Rightarrow {\left( {30} \right)^2} - 2 * 10 * 20\]
On simplifying square,
\[ \Rightarrow 900 - 2 * 10 * 20\]
And on multiplying,
\[ \Rightarrow 900 - 400\]
We get, \[ \Rightarrow 500\]
\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]\[ \Rightarrow 500\]
Note: In this type of question, first of all observe the given statements and calculate the values. Accordingly, implement the identities which are most appropriate.
Formula Used: Here, we can use the formula according to the requirement of the question\[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\] , \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\] , \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Complete step-by-step answer:
Now, we will begin with:
(a)\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]
First, split 109 and 91 in factors of 100.
\[ \Rightarrow {\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left[ {{a^2} + {b^2}} \right]\]
Now considering left hand side , \[{\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = \]\[{\left( {100 + 9} \right)^2} + {\left( {100 - 9} \right)^2}\]
From here, we can clearly see that \[a = 100\] and \[b = 9\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 2\left[ {{a^2} + {b^2}} \right]\]
\[ \Rightarrow 2\left[ {{{\left( {100} \right)}^2} + {{\left( 9 \right)}^2}} \right]\]
By opening the squares:
\[ \Rightarrow 2\left[ {10000 + 81} \right]\]
On further simplifying:
\[ \Rightarrow 2\left[ {10081} \right]\]
We get, \[ \Rightarrow 20162\]
\[{\left( {109} \right)^2} + {\left( {91} \right)^2}\]\[ \Rightarrow 20162\]
(b)\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]
As, it is clearly visible that is \[{a^2} - {b^2}\] and hence we can use the identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] .
Now considering left hand side , \[{a^2} - {b^2}\]\[ = {\left( {200} \right)^2} - {\left( {100} \right)^2}\]
From here, we can clearly see that \[a = 200\] and \[b = 100\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right)\]
\[ \Rightarrow \left( {200 - 100} \right)\left( {200 + 100} \right)\]
On simplifying:
\[ \Rightarrow 100 * 300\]
We get, \[ \Rightarrow 30000\]
\[{\left( {200} \right)^2} - {\left( {100} \right)^2}\]\[ \Rightarrow 30000\]
(c)\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]
First, of all split 1025 and 975 in factors of 1000.
\[ \Rightarrow {\left( {1000 + 25} \right)^2} - {\left( {1000 - 25} \right)^2}\]
Here, it becomes an identity \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\]
Now considering left hand side , \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = \]\[{\left( {1000 + 25} \right)^2} + {\left( {1000 - 25} \right)^2}\]
From here, we can clearly see that \[a = 1000\] and \[b = 25\] .
Put the values of a and b in right hand side of formula \[ \Rightarrow 4ab\]
\[ \Rightarrow 4*1000*25\]
By multiplying:
\[ \Rightarrow 100000\]
\[{\left( {1025} \right)^2} - {\left( {975} \right)^2}\]\[ \Rightarrow 100000\]
(d)\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]
As, it is clearly visible that is \[{a^2} + {b^2}\] and hence we can use the identity \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
Now considering left hand side , \[{a^2} + {b^2}\]\[ = {\left( {10} \right)^2} + {\left( {20} \right)^2}\]
From here, we can clearly see that \[a = 10\] and \[b = 20\] .
Put the values of a and b in right hand side of formula \[ = {\left( {a + b} \right)^2} - 2ab\]
\[ \Rightarrow {\left( {10 + 20} \right)^2} - 2 * 10 * 20\]
\[ \Rightarrow {\left( {30} \right)^2} - 2 * 10 * 20\]
On simplifying square,
\[ \Rightarrow 900 - 2 * 10 * 20\]
And on multiplying,
\[ \Rightarrow 900 - 400\]
We get, \[ \Rightarrow 500\]
\[{\left( {10} \right)^2} + {\left( {20} \right)^2}\]\[ \Rightarrow 500\]
Note: In this type of question, first of all observe the given statements and calculate the values. Accordingly, implement the identities which are most appropriate.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

