Simplify the following expression: $\dfrac{25\times {{t}^{-4}}}{{{5}^{-2}}\times 10\times {{t}^{-8}}}\left( t\ne 0 \right)$.
Answer
361.8k+ views
Hint: Direct division can be used as an early approach to this type of problem to cross-check the answers. Also, it can be used to ease the calculations for numeric parts which are easily cancelled out through divisions and variables are transposed and solved using properties of exponents.
Complete step-by-step answer:
Here, we have the given equation as $\dfrac{25\times {{t}^{-4}}}{{{5}^{-2}}\times 10\times {{t}^{-8}}}\left( t\ne 0 \right)$.
We have to apply most of the properties of exponents in the above given equation, i.e.,
$\begin{align}
& \Rightarrow {{a}^{x}}=\dfrac{1}{{{a}^{-x}}} \\
& \Rightarrow \dfrac{{{a}^{x}}}{{{b}^{y}}}={{a}^{x}}\times {{b}^{-y}} \\
& \Rightarrow {{a}^{x}}\times {{a}^{y}}={{a}^{x+y}}...\text{ }\left( 1 \right) \\
\end{align}$
Thus, from the given equation, we have
$=\dfrac{25\times {{t}^{-4}}}{{{5}^{-2}}\times 10\times {{t}^{-8}}}\left( t\ne 0 \right)$
Transposing values from denominator to numerator, we get
\[\begin{align}
& =\dfrac{25\times {{t}^{-4}}}{{{5}^{-2}}\times 10\times {{t}^{-8}}} \\
& =\dfrac{25\times {{5}^{-\left( -2 \right)}}\times {{t}^{-4}}\times {{t}^{-\left( -8 \right)}}}{10} \\
& =\dfrac{25\times {{5}^{2}}\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
& =\dfrac{25\times 25\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
& =\dfrac{625\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
\end{align}\]
Now, applying another property of exponent from equation (1), we get
$\begin{align}
& =\dfrac{625\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
& =\dfrac{625\times {{t}^{-4+8}}}{10} \\
& =\dfrac{625\times {{t}^{4}}}{10} \\
\end{align}$
Applying simple division on numeric terms, we get
$\begin{align}
& =\dfrac{625\times {{t}^{4}}}{10} \\
& =62.5{{t}^{4}} \\
\end{align}$
Hence, the given equation can be simplified to $62.5{{t}^{4}}$.
Note: This type of problems can be easily solved by using direct division or using the properties of exponents. An error which can be made here is that when exponents are transposed then there can be changes in sign conventions in their powers, which needs to be kept in mind.
Complete step-by-step answer:
Here, we have the given equation as $\dfrac{25\times {{t}^{-4}}}{{{5}^{-2}}\times 10\times {{t}^{-8}}}\left( t\ne 0 \right)$.
We have to apply most of the properties of exponents in the above given equation, i.e.,
$\begin{align}
& \Rightarrow {{a}^{x}}=\dfrac{1}{{{a}^{-x}}} \\
& \Rightarrow \dfrac{{{a}^{x}}}{{{b}^{y}}}={{a}^{x}}\times {{b}^{-y}} \\
& \Rightarrow {{a}^{x}}\times {{a}^{y}}={{a}^{x+y}}...\text{ }\left( 1 \right) \\
\end{align}$
Thus, from the given equation, we have
$=\dfrac{25\times {{t}^{-4}}}{{{5}^{-2}}\times 10\times {{t}^{-8}}}\left( t\ne 0 \right)$
Transposing values from denominator to numerator, we get
\[\begin{align}
& =\dfrac{25\times {{t}^{-4}}}{{{5}^{-2}}\times 10\times {{t}^{-8}}} \\
& =\dfrac{25\times {{5}^{-\left( -2 \right)}}\times {{t}^{-4}}\times {{t}^{-\left( -8 \right)}}}{10} \\
& =\dfrac{25\times {{5}^{2}}\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
& =\dfrac{25\times 25\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
& =\dfrac{625\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
\end{align}\]
Now, applying another property of exponent from equation (1), we get
$\begin{align}
& =\dfrac{625\times {{t}^{-4}}\times {{t}^{8}}}{10} \\
& =\dfrac{625\times {{t}^{-4+8}}}{10} \\
& =\dfrac{625\times {{t}^{4}}}{10} \\
\end{align}$
Applying simple division on numeric terms, we get
$\begin{align}
& =\dfrac{625\times {{t}^{4}}}{10} \\
& =62.5{{t}^{4}} \\
\end{align}$
Hence, the given equation can be simplified to $62.5{{t}^{4}}$.
Note: This type of problems can be easily solved by using direct division or using the properties of exponents. An error which can be made here is that when exponents are transposed then there can be changes in sign conventions in their powers, which needs to be kept in mind.
Last updated date: 24th Sep 2023
•
Total views: 361.8k
•
Views today: 9.61k
Recently Updated Pages
What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
