
How do you simplify the following expression: $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}$?
Answer
550.2k+ views
Hint: We can use the identity theorem of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ for the denominator. We multiply $\left( \sqrt{x+5}+\sqrt{5} \right)$ to both denominator and the numerator. We simplify the denominator and eliminate $x$.
Complete step by step solution:
The given surds expression is $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}$. We have to apply the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We multiply $\left( \sqrt{x+5}+\sqrt{5} \right)$ to both denominator and the numerator. This is the conjugate form of $\left( \sqrt{x+5}-\sqrt{5} \right)$.
Now the fraction becomes $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)}$.
We assume the values $a=\sqrt{x+5};b=\sqrt{5}$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Therefore, $\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)={{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}$.
Simplifying we get $\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)={{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}$
$\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)=x+5-5=x$.
The fraction becomes $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{x}$.
We eliminate the variable $x$ to find $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{x}=\left( \sqrt{x+5}+\sqrt{5} \right)$.
Therefore, the simplified form of $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}$ is $\left( \sqrt{x+5}+\sqrt{5} \right)$.
Note:
Instead of multiplying $\left( \sqrt{x+5}+\sqrt{5} \right)$, we can also form the variable $x$ as $x=x+5-5$. We try to form the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ where we take $x=\left( x+5 \right)-\left( 5 \right)={{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}$.
Now we break it to get ${{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}=\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)$.
Then we can eliminate the part of $\left( \sqrt{x+5}-\sqrt{5} \right)$ to simplify.
Complete step by step solution:
The given surds expression is $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}$. We have to apply the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We multiply $\left( \sqrt{x+5}+\sqrt{5} \right)$ to both denominator and the numerator. This is the conjugate form of $\left( \sqrt{x+5}-\sqrt{5} \right)$.
Now the fraction becomes $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)}$.
We assume the values $a=\sqrt{x+5};b=\sqrt{5}$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Therefore, $\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)={{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}$.
Simplifying we get $\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)={{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}$
$\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)=x+5-5=x$.
The fraction becomes $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{x}$.
We eliminate the variable $x$ to find $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}=\dfrac{x\left( \sqrt{x+5}+\sqrt{5} \right)}{x}=\left( \sqrt{x+5}+\sqrt{5} \right)$.
Therefore, the simplified form of $\dfrac{x}{\sqrt{x+5}-\sqrt{5}}$ is $\left( \sqrt{x+5}+\sqrt{5} \right)$.
Note:
Instead of multiplying $\left( \sqrt{x+5}+\sqrt{5} \right)$, we can also form the variable $x$ as $x=x+5-5$. We try to form the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ where we take $x=\left( x+5 \right)-\left( 5 \right)={{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}$.
Now we break it to get ${{\left( \sqrt{x+5} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}=\left( \sqrt{x+5}-\sqrt{5} \right)\left( \sqrt{x+5}+\sqrt{5} \right)$.
Then we can eliminate the part of $\left( \sqrt{x+5}-\sqrt{5} \right)$ to simplify.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

