
Simplify the following expression and write its value in simpler numbers: \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Answer
618.6k+ views
Hint: Recall the definition for rational and irrational numbers. Use rationalization to convert the denominator of each term into a rational number and then evaluate the expression.
Complete step by step solution:
We, now, rationalise \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 + 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{35 + 7\sqrt 3 + 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{47 + 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = 47 + 27\sqrt 3 .........(1)\]
We, now, rationalise \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 - 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} \times \dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{35 - 7\sqrt 3 - 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{47 - 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 - 27\sqrt 3 .........(2)\]
Using equations (1) and (2), we have:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - (47 - 27\sqrt 3 )\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - 47 + 27\sqrt 3 \]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 54\sqrt 3 \]
Hence, the answer is \[54\sqrt 3 \].
Note: When you substitute the rationalized terms do not forget the negative sign in between the terms which might end up with answer 94, which is wrong.
Complete step by step solution:
We, now, rationalise \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 + 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{35 + 7\sqrt 3 + 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{47 + 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = 47 + 27\sqrt 3 .........(1)\]
We, now, rationalise \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 - 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} \times \dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{35 - 7\sqrt 3 - 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{47 - 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 - 27\sqrt 3 .........(2)\]
Using equations (1) and (2), we have:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - (47 - 27\sqrt 3 )\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - 47 + 27\sqrt 3 \]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 54\sqrt 3 \]
Hence, the answer is \[54\sqrt 3 \].
Note: When you substitute the rationalized terms do not forget the negative sign in between the terms which might end up with answer 94, which is wrong.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


