
Simplify the following expression and write its value in simpler numbers: \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Answer
521.1k+ views
Hint: Recall the definition for rational and irrational numbers. Use rationalization to convert the denominator of each term into a rational number and then evaluate the expression.
Complete step by step solution:
We, now, rationalise \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 + 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{35 + 7\sqrt 3 + 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{47 + 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = 47 + 27\sqrt 3 .........(1)\]
We, now, rationalise \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 - 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} \times \dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{35 - 7\sqrt 3 - 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{47 - 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 - 27\sqrt 3 .........(2)\]
Using equations (1) and (2), we have:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - (47 - 27\sqrt 3 )\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - 47 + 27\sqrt 3 \]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 54\sqrt 3 \]
Hence, the answer is \[54\sqrt 3 \].
Note: When you substitute the rationalized terms do not forget the negative sign in between the terms which might end up with answer 94, which is wrong.
Complete step by step solution:
We, now, rationalise \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 + 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{35 + 7\sqrt 3 + 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{47 + 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = 47 + 27\sqrt 3 .........(1)\]
We, now, rationalise \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 - 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} \times \dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{35 - 7\sqrt 3 - 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{47 - 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 - 27\sqrt 3 .........(2)\]
Using equations (1) and (2), we have:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - (47 - 27\sqrt 3 )\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - 47 + 27\sqrt 3 \]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 54\sqrt 3 \]
Hence, the answer is \[54\sqrt 3 \].
Note: When you substitute the rationalized terms do not forget the negative sign in between the terms which might end up with answer 94, which is wrong.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Is it true that area of a segment of a circle is less class 9 maths CBSE

The distance of the point P 2 3 from the x axis is class 9 maths CBSE

Degree of the zero polynomial

What is chronic hunger and seasonal hunger

Give the formula for class mark and class size of a class 9 maths CBSE
