
Simplify the following expression and write its value in simpler numbers: \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Answer
603.3k+ views
Hint: Recall the definition for rational and irrational numbers. Use rationalization to convert the denominator of each term into a rational number and then evaluate the expression.
Complete step by step solution:
We, now, rationalise \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 + 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{35 + 7\sqrt 3 + 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{47 + 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = 47 + 27\sqrt 3 .........(1)\]
We, now, rationalise \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 - 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} \times \dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{35 - 7\sqrt 3 - 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{47 - 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 - 27\sqrt 3 .........(2)\]
Using equations (1) and (2), we have:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - (47 - 27\sqrt 3 )\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - 47 + 27\sqrt 3 \]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 54\sqrt 3 \]
Hence, the answer is \[54\sqrt 3 \].
Note: When you substitute the rationalized terms do not forget the negative sign in between the terms which might end up with answer 94, which is wrong.
Complete step by step solution:
We, now, rationalise \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 + 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{35 + 7\sqrt 3 + 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = \dfrac{{47 + 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} = 47 + 27\sqrt 3 .........(1)\]
We, now, rationalise \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }}\] by multiplying both the numerator and the denominator by \[7 - 4\sqrt 3 \]. Hence, we have as follows:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} \times \dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}\]
Simplifying using \[(a + b)(a - b) = {a^2} + {b^2}\], we get:
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{35 - 7\sqrt 3 - 20\sqrt 3 + 12}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = \dfrac{{47 - 27\sqrt 3 }}{{49 - 48}}\]
$\Rightarrow$ \[\dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 - 27\sqrt 3 .........(2)\]
Using equations (1) and (2), we have:
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - (47 - 27\sqrt 3 )\]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 47 + 27\sqrt 3 - 47 + 27\sqrt 3 \]
$\Rightarrow$ \[\dfrac{{5 + \sqrt 3 }}{{7 - 4\sqrt 3 }} - \dfrac{{5 - \sqrt 3 }}{{7 + 4\sqrt 3 }} = 54\sqrt 3 \]
Hence, the answer is \[54\sqrt 3 \].
Note: When you substitute the rationalized terms do not forget the negative sign in between the terms which might end up with answer 94, which is wrong.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which mountain pass links Mangalore to Chikmagalur class 9 social science CBSE

What is chronic hunger and seasonal hunger

Which neighbouring country does not share a boundary class 9 social science CBSE

Give 5 examples of refraction of light in daily life

Explain the necessity of Political Parties in a de class 9 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE


