
How do you simplify the expression \[{\left( {{z^5}} \right)^3}\] ?
Answer
539.7k+ views
Hint: Here we have a simple algebraic expression. We can simplify this using the laws of indices. Without knowing the laws of indices it is impossible to simplify any mathematical equation or expression. To solve this we use the third law of indices (brackets). That is \[ \Rightarrow {\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
Complete step-by-step answer:
As we know the third law: brackets: If a term with a power is itself raised to a power then the powers are multiplied together. That is \[ \Rightarrow {\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
Given, \[{\left( {{z^5}} \right)^3}\]
On comparing we can say that \[m = 5,n = 3\] .
Applying we have,
\[ \Rightarrow {\left( {{z^5}} \right)^3} = {\left( z \right)^{5 \times 3}}\]
\[ \Rightarrow {\left( {{z^5}} \right)^3} = {\left( z \right)^{15}}\] . This is the simplified form.
Here ‘z’ can be variable (unknown value) or any constant.
Note: We have several laws of indices.
\[ \bullet \] The first law: multiplication: if the two terms have the same base and are to be multiplied together their indices are added. That is \[ \Rightarrow {x^m} \times {x^n} = {x^{m + n}}\]
\[ \bullet \] The second law: division: If the two terms have the same base and are to be divided their indices are subtracted. That is \[ \Rightarrow \dfrac{{{x^m}}}{{{x^n}}} = {x^{m - n}}\]
\[ \bullet \] The third law: brackets: If a term with a power is itself raised to a power then the powers are multiplied together. That is \[ \Rightarrow {\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
\[ \bullet \] As we have the second law of indices which helps to explain why anything to the power of zero is equal to one. \[ \Rightarrow {x^0} = 1\]
\[ \bullet \] Negative power \[ \Rightarrow {x^{ - n}} = \dfrac{1}{{{x^m}}}\]
\[ \bullet \] The fractional power \[ \Rightarrow {x^{\dfrac{m}{n}}} = \left( {\sqrt[n] {m}} \right)\]
Complete step-by-step answer:
As we know the third law: brackets: If a term with a power is itself raised to a power then the powers are multiplied together. That is \[ \Rightarrow {\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
Given, \[{\left( {{z^5}} \right)^3}\]
On comparing we can say that \[m = 5,n = 3\] .
Applying we have,
\[ \Rightarrow {\left( {{z^5}} \right)^3} = {\left( z \right)^{5 \times 3}}\]
\[ \Rightarrow {\left( {{z^5}} \right)^3} = {\left( z \right)^{15}}\] . This is the simplified form.
Here ‘z’ can be variable (unknown value) or any constant.
Note: We have several laws of indices.
\[ \bullet \] The first law: multiplication: if the two terms have the same base and are to be multiplied together their indices are added. That is \[ \Rightarrow {x^m} \times {x^n} = {x^{m + n}}\]
\[ \bullet \] The second law: division: If the two terms have the same base and are to be divided their indices are subtracted. That is \[ \Rightarrow \dfrac{{{x^m}}}{{{x^n}}} = {x^{m - n}}\]
\[ \bullet \] The third law: brackets: If a term with a power is itself raised to a power then the powers are multiplied together. That is \[ \Rightarrow {\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
\[ \bullet \] As we have the second law of indices which helps to explain why anything to the power of zero is equal to one. \[ \Rightarrow {x^0} = 1\]
\[ \bullet \] Negative power \[ \Rightarrow {x^{ - n}} = \dfrac{1}{{{x^m}}}\]
\[ \bullet \] The fractional power \[ \Rightarrow {x^{\dfrac{m}{n}}} = \left( {\sqrt[n] {m}} \right)\]
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


