
Simplify the expression $\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)$.
Answer
516.6k+ views
Hint: We first try to explain the concept of the identity theorem of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to multiply the given polynomial $\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)$. We assume the values of the variables after each multiplication. The final multiplied linear polynomial is the solution.
Complete step-by-step solution:
The main condition of multiplication is to use the identity formulas and change its variables.
For the multiplication of the given polynomial $\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)$, we apply the identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We take two multiplication at a time and keep continuing multiplication until we reach one single polynomial form.
We take $\left( x-2 \right)\left( x+2 \right)$. We put the value of $a=x;b=2$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, $\left( x-2 \right)\left( x+2 \right)={{x}^{2}}-{{2}^{2}}={{x}^{2}}-4$.
So, \[\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)=\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)\].
Now we take \[\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\]. We put the value of $a={{x}^{2}};b=4$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, $\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)={{\left( {{x}^{2}} \right)}^{2}}-{{4}^{2}}={{x}^{4}}-16$.
So, \[\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)=\left( {{x}^{4}}-16 \right)\left( {{x}^{4}}+16 \right)\].
Finally, we take \[\left( {{x}^{4}}-16 \right)\left( {{x}^{4}}+16 \right)\]. We put the value of $a={{x}^{4}};b=16$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, $\left( {{x}^{4}}-16 \right)\left( {{x}^{4}}+16 \right)={{\left( {{x}^{4}} \right)}^{2}}-{{16}^{2}}={{x}^{8}}-256$.
So, the total multiplication is \[\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)={{x}^{8}}-256\].
The simplified form of $\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)$ is \[{{x}^{8}}-256\].
Note: The highest power of the variable or the degree of a polynomial decides the number of roots or the solution of that polynomial. Quadratic equations have two roots. Cubic polynomials have three. It can have both real and imaginary roots. In the given polynomial the values will be dependent on the second variable.
Complete step-by-step solution:
The main condition of multiplication is to use the identity formulas and change its variables.
For the multiplication of the given polynomial $\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)$, we apply the identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We take two multiplication at a time and keep continuing multiplication until we reach one single polynomial form.
We take $\left( x-2 \right)\left( x+2 \right)$. We put the value of $a=x;b=2$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, $\left( x-2 \right)\left( x+2 \right)={{x}^{2}}-{{2}^{2}}={{x}^{2}}-4$.
So, \[\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)=\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)\].
Now we take \[\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\]. We put the value of $a={{x}^{2}};b=4$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, $\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)={{\left( {{x}^{2}} \right)}^{2}}-{{4}^{2}}={{x}^{4}}-16$.
So, \[\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)=\left( {{x}^{4}}-16 \right)\left( {{x}^{4}}+16 \right)\].
Finally, we take \[\left( {{x}^{4}}-16 \right)\left( {{x}^{4}}+16 \right)\]. We put the value of $a={{x}^{4}};b=16$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, $\left( {{x}^{4}}-16 \right)\left( {{x}^{4}}+16 \right)={{\left( {{x}^{4}} \right)}^{2}}-{{16}^{2}}={{x}^{8}}-256$.
So, the total multiplication is \[\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)={{x}^{8}}-256\].
The simplified form of $\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\left( {{x}^{4}}+16 \right)$ is \[{{x}^{8}}-256\].
Note: The highest power of the variable or the degree of a polynomial decides the number of roots or the solution of that polynomial. Quadratic equations have two roots. Cubic polynomials have three. It can have both real and imaginary roots. In the given polynomial the values will be dependent on the second variable.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


