
Simplify the expression:
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
Answer
474.9k+ views
Hint: In order to this question, to simplify the given expression, first we will rewrite the given expression and then we will analyse or rewrite the trigonometric ratios which we can use to simplify the given expression, and then we will simplify until we will get the simplified value.
Complete step-by-step solution:
The given expression is:
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
As we know, $\sin ({270^\circ} + \theta ) = - \cos \theta $ ,
$\sin ({270^\circ} - \theta ) = - \cos \theta $
$\cos ({720^\circ} - \theta ) = \cos \theta $ ,
$\sin ({540^\circ} + \theta ) = -\sin \theta $
$\cot ({270^\circ} - \theta ) = \tan \theta $ and
$\cos ec({450^\circ} + \theta ) = \sec \theta $
So,
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
$= \dfrac{{ - \cos x \times {{\cos }^3}x - (-\cos x \times {-{\sin }^3}x)}}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\tan x}}{{{{\sec }^2}x}} $
$= \dfrac{{ - {{\cos }^4}x - {{\sin }^3}x}\cos x}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\sin x}}{{\cos x}} \times {\cos ^2}x $
$= \dfrac{{ -\cos x ({{\cos }^3}x + {{\sin }^3}x)}}{{ - \cos x(\sin x + \cos x)}} + \sin x\cos x $
$=\dfrac{{{{{\sin}^3}x}+{{\cos }^3}x}}{{\sin x+\cos x}} + \sin x\cos x $
We know that ${a}^3+{b}^3 = \left(a+b\right)\left(a^2-ab+b^2\right)$ on using this identity
$=\dfrac{\require{\cancel}{\cancel{\left(\sin x+\cos x \right)}}\left({{\cos}^2{x}}-\cos x \sin x +{{\sin}^{2}x}\right)}{\require{\cancel}{\cancel{{\sin x+\cos x}}}}+\sin x \cos x$
$={{\cos }^2}x - \sin x\cos x +{{\sin }^2}x+\sin x \cos x $
$= {{\cos }^2}x+{{\sin }^2}x$
$=1$
Since we know the identity ${{\cos }^2}x+{{\sin }^2}x=1 $. Hence the final answer is 1.
Note:
$\bullet $ There are multiple ways to represent a trigonometric expression.
$\bullet$ Simplifying one side of the equation to equal the other side is a method for verifying an identity.
$ \bullet $ The approach to verifying an identity depends on the nature of the identity.
$ \bullet $ We can create an identity from a given expression.
$ \bullet $ Verifying an identity may involve algebra with the fundamental identities.
Complete step-by-step solution:
The given expression is:
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
As we know, $\sin ({270^\circ} + \theta ) = - \cos \theta $ ,
$\sin ({270^\circ} - \theta ) = - \cos \theta $
$\cos ({720^\circ} - \theta ) = \cos \theta $ ,
$\sin ({540^\circ} + \theta ) = -\sin \theta $
$\cot ({270^\circ} - \theta ) = \tan \theta $ and
$\cos ec({450^\circ} + \theta ) = \sec \theta $
So,
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
$= \dfrac{{ - \cos x \times {{\cos }^3}x - (-\cos x \times {-{\sin }^3}x)}}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\tan x}}{{{{\sec }^2}x}} $
$= \dfrac{{ - {{\cos }^4}x - {{\sin }^3}x}\cos x}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\sin x}}{{\cos x}} \times {\cos ^2}x $
$= \dfrac{{ -\cos x ({{\cos }^3}x + {{\sin }^3}x)}}{{ - \cos x(\sin x + \cos x)}} + \sin x\cos x $
$=\dfrac{{{{{\sin}^3}x}+{{\cos }^3}x}}{{\sin x+\cos x}} + \sin x\cos x $
We know that ${a}^3+{b}^3 = \left(a+b\right)\left(a^2-ab+b^2\right)$ on using this identity
$=\dfrac{\require{\cancel}{\cancel{\left(\sin x+\cos x \right)}}\left({{\cos}^2{x}}-\cos x \sin x +{{\sin}^{2}x}\right)}{\require{\cancel}{\cancel{{\sin x+\cos x}}}}+\sin x \cos x$
$={{\cos }^2}x - \sin x\cos x +{{\sin }^2}x+\sin x \cos x $
$= {{\cos }^2}x+{{\sin }^2}x$
$=1$
Since we know the identity ${{\cos }^2}x+{{\sin }^2}x=1 $. Hence the final answer is 1.
Note:
$\bullet $ There are multiple ways to represent a trigonometric expression.
$\bullet$ Simplifying one side of the equation to equal the other side is a method for verifying an identity.
$ \bullet $ The approach to verifying an identity depends on the nature of the identity.
$ \bullet $ We can create an identity from a given expression.
$ \bullet $ Verifying an identity may involve algebra with the fundamental identities.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

