
Simplify the expression:
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
Answer
489.3k+ views
Hint: In order to this question, to simplify the given expression, first we will rewrite the given expression and then we will analyse or rewrite the trigonometric ratios which we can use to simplify the given expression, and then we will simplify until we will get the simplified value.
Complete step-by-step solution:
The given expression is:
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
As we know, $\sin ({270^\circ} + \theta ) = - \cos \theta $ ,
$\sin ({270^\circ} - \theta ) = - \cos \theta $
$\cos ({720^\circ} - \theta ) = \cos \theta $ ,
$\sin ({540^\circ} + \theta ) = -\sin \theta $
$\cot ({270^\circ} - \theta ) = \tan \theta $ and
$\cos ec({450^\circ} + \theta ) = \sec \theta $
So,
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
$= \dfrac{{ - \cos x \times {{\cos }^3}x - (-\cos x \times {-{\sin }^3}x)}}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\tan x}}{{{{\sec }^2}x}} $
$= \dfrac{{ - {{\cos }^4}x - {{\sin }^3}x}\cos x}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\sin x}}{{\cos x}} \times {\cos ^2}x $
$= \dfrac{{ -\cos x ({{\cos }^3}x + {{\sin }^3}x)}}{{ - \cos x(\sin x + \cos x)}} + \sin x\cos x $
$=\dfrac{{{{{\sin}^3}x}+{{\cos }^3}x}}{{\sin x+\cos x}} + \sin x\cos x $
We know that ${a}^3+{b}^3 = \left(a+b\right)\left(a^2-ab+b^2\right)$ on using this identity
$=\dfrac{\require{\cancel}{\cancel{\left(\sin x+\cos x \right)}}\left({{\cos}^2{x}}-\cos x \sin x +{{\sin}^{2}x}\right)}{\require{\cancel}{\cancel{{\sin x+\cos x}}}}+\sin x \cos x$
$={{\cos }^2}x - \sin x\cos x +{{\sin }^2}x+\sin x \cos x $
$= {{\cos }^2}x+{{\sin }^2}x$
$=1$
Since we know the identity ${{\cos }^2}x+{{\sin }^2}x=1 $. Hence the final answer is 1.
Note:
$\bullet $ There are multiple ways to represent a trigonometric expression.
$\bullet$ Simplifying one side of the equation to equal the other side is a method for verifying an identity.
$ \bullet $ The approach to verifying an identity depends on the nature of the identity.
$ \bullet $ We can create an identity from a given expression.
$ \bullet $ Verifying an identity may involve algebra with the fundamental identities.
Complete step-by-step solution:
The given expression is:
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
As we know, $\sin ({270^\circ} + \theta ) = - \cos \theta $ ,
$\sin ({270^\circ} - \theta ) = - \cos \theta $
$\cos ({720^\circ} - \theta ) = \cos \theta $ ,
$\sin ({540^\circ} + \theta ) = -\sin \theta $
$\cot ({270^\circ} - \theta ) = \tan \theta $ and
$\cos ec({450^\circ} + \theta ) = \sec \theta $
So,
$\dfrac{{\sin ({{270}^\circ} + x){{\cos }^3}({{720}^\circ} - x) - \sin ({{270}^\circ} - x){{\sin }^3}({{540}^\circ} + x)}}{{\sin ({{90}^\circ} + x)\sin ( - x) - {{\cos }^2}({{180}^\circ} - x)}} + \dfrac{{\cot ({{270}^\circ} - x)}}{{\cos e{c^2}({{450}^\circ} + x)}}$
$= \dfrac{{ - \cos x \times {{\cos }^3}x - (-\cos x \times {-{\sin }^3}x)}}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\tan x}}{{{{\sec }^2}x}} $
$= \dfrac{{ - {{\cos }^4}x - {{\sin }^3}x}\cos x}{{ - \cos x\sin x - {{\cos }^2}x}} + \dfrac{{\sin x}}{{\cos x}} \times {\cos ^2}x $
$= \dfrac{{ -\cos x ({{\cos }^3}x + {{\sin }^3}x)}}{{ - \cos x(\sin x + \cos x)}} + \sin x\cos x $
$=\dfrac{{{{{\sin}^3}x}+{{\cos }^3}x}}{{\sin x+\cos x}} + \sin x\cos x $
We know that ${a}^3+{b}^3 = \left(a+b\right)\left(a^2-ab+b^2\right)$ on using this identity
$=\dfrac{\require{\cancel}{\cancel{\left(\sin x+\cos x \right)}}\left({{\cos}^2{x}}-\cos x \sin x +{{\sin}^{2}x}\right)}{\require{\cancel}{\cancel{{\sin x+\cos x}}}}+\sin x \cos x$
$={{\cos }^2}x - \sin x\cos x +{{\sin }^2}x+\sin x \cos x $
$= {{\cos }^2}x+{{\sin }^2}x$
$=1$
Since we know the identity ${{\cos }^2}x+{{\sin }^2}x=1 $. Hence the final answer is 1.
Note:
$\bullet $ There are multiple ways to represent a trigonometric expression.
$\bullet$ Simplifying one side of the equation to equal the other side is a method for verifying an identity.
$ \bullet $ The approach to verifying an identity depends on the nature of the identity.
$ \bullet $ We can create an identity from a given expression.
$ \bullet $ Verifying an identity may involve algebra with the fundamental identities.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

