
How do you simplify the expression $\dfrac{1-\csc x}{1-{{\csc }^{2}}x}?$
Answer
558.9k+ views
Hint: The above given question is of trigonometric identities. So, we will first convert all the $\csc x$ into $\sin x$ terms by using the formula $\csc x=\dfrac{1}{\sin x}$ and then we will use the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and write $1-{{\cos }^{2}}x={{\sin }^{2}}x$ and then we will simplify the given expression.
Complete answer:
We can see that above given question is of trigonometric identity and so we will use trigonometric identity to simplify $\dfrac{1-\csc x}{1-{{\csc }^{2}}x}$.
At first, we will convert all the $\csc x$ into $\sin x$ terms by using the formula $\csc x=\dfrac{1}{\sin x}$, then we will get:
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{1-\dfrac{1}{\sin x}}{1-\dfrac{1}{{{\sin }^{2}}x}}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{1-\dfrac{1}{\sin x}}{1-\dfrac{1}{{{\sin }^{2}}x}}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\dfrac{\sin x-1}{\sin x}}{\dfrac{{{\sin }^{2}}x-1}{{{\sin }^{2}}x}}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\left( \sin x-1 \right){{\sin }^{2}}x}{\left( {{\sin }^{2}}x-1 \right)\sin x}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\left( \sin x-1 \right)\sin x}{\left( {{\sin }^{2}}x-1 \right)}$
Now, we will use the formula $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ so, we can write ${{\sin }^{2}}x-1=\left( \sin x-1 \right)\left( \sin x+1 \right)$.
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\left( \sin x-1 \right)\sin x}{\left( \sin x-1 \right)\left( \sin x+1 \right)}$
Now, after cancelling the common terms from numerator and denominator, we will get:
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\sin x}{\left( \sin x+1 \right)}$
So, the simplified form of $\dfrac{1-\csc x}{1-{{\csc }^{2}}x}$ is $\dfrac{\sin x}{1+\sin x}$.
This is our required solution.
Note: Students are required to note that they should memorize all the trigonometric formulas otherwise they will not be able to solve trigonometric formulas. Also, note that when we have simplified the given trigonometric expression we usually convert all the terms in the given expression into sin x and cos x and then simplify it.
Complete answer:
We can see that above given question is of trigonometric identity and so we will use trigonometric identity to simplify $\dfrac{1-\csc x}{1-{{\csc }^{2}}x}$.
At first, we will convert all the $\csc x$ into $\sin x$ terms by using the formula $\csc x=\dfrac{1}{\sin x}$, then we will get:
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{1-\dfrac{1}{\sin x}}{1-\dfrac{1}{{{\sin }^{2}}x}}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{1-\dfrac{1}{\sin x}}{1-\dfrac{1}{{{\sin }^{2}}x}}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\dfrac{\sin x-1}{\sin x}}{\dfrac{{{\sin }^{2}}x-1}{{{\sin }^{2}}x}}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\left( \sin x-1 \right){{\sin }^{2}}x}{\left( {{\sin }^{2}}x-1 \right)\sin x}$
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\left( \sin x-1 \right)\sin x}{\left( {{\sin }^{2}}x-1 \right)}$
Now, we will use the formula $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ so, we can write ${{\sin }^{2}}x-1=\left( \sin x-1 \right)\left( \sin x+1 \right)$.
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\left( \sin x-1 \right)\sin x}{\left( \sin x-1 \right)\left( \sin x+1 \right)}$
Now, after cancelling the common terms from numerator and denominator, we will get:
$\Rightarrow \dfrac{1-\csc x}{1-{{\csc }^{2}}x}=\dfrac{\sin x}{\left( \sin x+1 \right)}$
So, the simplified form of $\dfrac{1-\csc x}{1-{{\csc }^{2}}x}$ is $\dfrac{\sin x}{1+\sin x}$.
This is our required solution.
Note: Students are required to note that they should memorize all the trigonometric formulas otherwise they will not be able to solve trigonometric formulas. Also, note that when we have simplified the given trigonometric expression we usually convert all the terms in the given expression into sin x and cos x and then simplify it.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

