
Simplify the expression ${{\cos }^{4}}x-{{\sin }^{4}}x$
Answer
610.2k+ views
Hint: Use the algebraic identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Convert ${{\cos }^{4}}x-{{\sin }^{4}}x$ in the form of ${{a}^{2}}-{{b}^{2}}$ and use the previously mentioned identity. Use the fact that ${{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x$. Hence simplify the expression. Alternatively use Euler's identity to solve the expression. Use the fact that $\cos x=\dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2}$ and $\sin x=\dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i}$. Use the binomial theorem to expand the terms ${{\left( {{e}^{ix}}+{{e}^{-ix}} \right)}^{4}}$ and ${{\left( {{e}^{ix}}-{{e}^{-ix}} \right)}^{4}}$ . Finally, simplify and use the identity ${{e}^{ix}}+{{e}^{-ix}}=2\cos x$ and hence find the simplified expression.
Complete step-by-step answer:
Let $S={{\cos }^{4}}x-{{\sin }^{4}}x$
We have S $={{\cos }^{4}}x-{{\sin }^{4}}x$
We know that ${{\cos }^{4}}x={{\left( {{\cos }^{2}}x \right)}^{2}}$ and ${{\sin }^{4}}x={{\left( {{\sin }^{2}}x \right)}^{2}}$
Hence, we have
${{\cos }^{4}}x-{{\sin }^{4}}x={{\left( {{\cos }^{2}}x \right)}^{2}}-{{\left( {{\sin }^{2}}x \right)}^{2}}$
Hence, we have
S $={{\left( {{\cos }^{2}}x \right)}^{2}}-{{\left( {{\sin }^{2}}x \right)}^{2}}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using the above identity, we get
S $=\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)$
We know that ${{\cos }^{2}}x+{{\sin }^{2}}x=1$
Hence, we have
S $=\left( 1 \right)\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)$
We know that ${{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x$
Using the above identity, we get
S $=\cos 2x$
Hence S= cos2x
Hence, we have
${{\cos }^{4}}x-{{\sin }^{4}}x=\cos 2x$ which is the required simplified form of the expression.
Note: Alternative solution:
We know from Euler’s identity $\cos x+i\sin x={{e}^{ix}}$
Hence, we have $\cos x+i\sin x={{e}^{ix}}\text{ (i)}$
Replace x by -x, we get
$\cos x-i\sin x={{e}^{-ix}}\text{ (ii)}$
Adding equation (i) and equation (ii), we get
$2\cos x={{e}^{ix}}+{{e}^{-ix}}\Rightarrow \cos x=\dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2}$
Subtracting equation (i) and equation (ii), we get
$\sin x=\dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i}$
Hence, we have
S $={{\left( \dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2} \right)}^{4}}-{{\left( \dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i} \right)}^{4}}$
We know that ${{\left( a+b \right)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}$
Using the above identity, we get
$S=\dfrac{{{e}^{i4x}}+4{{e}^{i2x}}+6+4{{e}^{-i2x}}+{{e}^{-i4x}}}{16}-\dfrac{{{e}^{i4x}}-4{{e}^{i2x}}+6-4{{e}^{-i2x}}+{{e}^{-i4x}}}{16}$
Hence, we have
$S=\dfrac{8\left( {{e}^{i2x}}+{{e}^{-i2x}} \right)}{16}$
We know that ${{e}^{ix}}+{{e}^{-ix}}=2\cos x$
Replacing x by 2x, we get
${{e}^{i2x}}+{{e}^{-i2x}}=2\cos 2x$
Hence, we have $S=\dfrac{16}{16}\cos 2x$
Hence, we have S =cos2x, which is the required simplified expression.
Complete step-by-step answer:
Let $S={{\cos }^{4}}x-{{\sin }^{4}}x$
We have S $={{\cos }^{4}}x-{{\sin }^{4}}x$
We know that ${{\cos }^{4}}x={{\left( {{\cos }^{2}}x \right)}^{2}}$ and ${{\sin }^{4}}x={{\left( {{\sin }^{2}}x \right)}^{2}}$
Hence, we have
${{\cos }^{4}}x-{{\sin }^{4}}x={{\left( {{\cos }^{2}}x \right)}^{2}}-{{\left( {{\sin }^{2}}x \right)}^{2}}$
Hence, we have
S $={{\left( {{\cos }^{2}}x \right)}^{2}}-{{\left( {{\sin }^{2}}x \right)}^{2}}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using the above identity, we get
S $=\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)$
We know that ${{\cos }^{2}}x+{{\sin }^{2}}x=1$
Hence, we have
S $=\left( 1 \right)\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)$
We know that ${{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x$
Using the above identity, we get
S $=\cos 2x$
Hence S= cos2x
Hence, we have
${{\cos }^{4}}x-{{\sin }^{4}}x=\cos 2x$ which is the required simplified form of the expression.
Note: Alternative solution:
We know from Euler’s identity $\cos x+i\sin x={{e}^{ix}}$
Hence, we have $\cos x+i\sin x={{e}^{ix}}\text{ (i)}$
Replace x by -x, we get
$\cos x-i\sin x={{e}^{-ix}}\text{ (ii)}$
Adding equation (i) and equation (ii), we get
$2\cos x={{e}^{ix}}+{{e}^{-ix}}\Rightarrow \cos x=\dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2}$
Subtracting equation (i) and equation (ii), we get
$\sin x=\dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i}$
Hence, we have
S $={{\left( \dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2} \right)}^{4}}-{{\left( \dfrac{{{e}^{ix}}-{{e}^{-ix}}}{2i} \right)}^{4}}$
We know that ${{\left( a+b \right)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}$
Using the above identity, we get
$S=\dfrac{{{e}^{i4x}}+4{{e}^{i2x}}+6+4{{e}^{-i2x}}+{{e}^{-i4x}}}{16}-\dfrac{{{e}^{i4x}}-4{{e}^{i2x}}+6-4{{e}^{-i2x}}+{{e}^{-i4x}}}{16}$
Hence, we have
$S=\dfrac{8\left( {{e}^{i2x}}+{{e}^{-i2x}} \right)}{16}$
We know that ${{e}^{ix}}+{{e}^{-ix}}=2\cos x$
Replacing x by 2x, we get
${{e}^{i2x}}+{{e}^{-i2x}}=2\cos 2x$
Hence, we have $S=\dfrac{16}{16}\cos 2x$
Hence, we have S =cos2x, which is the required simplified expression.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

