
Simplify ${\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)$
Answer
581.1k+ views
Hint:
It is given in the question that we have to simplify ${\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)$
Firstly, we will multiply whole equation with cos x then
After that applying property $\left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right) = \tan \left( {A + B} \right)$ we will get answer.
Complete step by step solution:
It is given in the question that we have to simplify ${\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)$
$\because {\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)$
Now, divide the whole equation by cos x,
$\therefore {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\cos x}}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{\cos x}}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}}} \right)$
$\therefore {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)$
Since we can write 1 as tan $\dfrac{\pi }{4}$
$\therefore {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4}\tan x}}} \right)$
Now, applying property of $\left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right) = \tan \left( {A + B} \right)$
$\therefore {\tan ^{ - 1}}\left[ {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right]$
$\therefore \dfrac{\pi }{4} + x$
Note:
Some properties of $\tan \theta $ :
1) ${\tan ^2}\theta = {\sec ^2}\theta - 1$
2) $\tan \left( { - \theta } \right) = - \tan \theta $
3) $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
4) $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
5) $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
It is given in the question that we have to simplify ${\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)$
Firstly, we will multiply whole equation with cos x then
After that applying property $\left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right) = \tan \left( {A + B} \right)$ we will get answer.
Complete step by step solution:
It is given in the question that we have to simplify ${\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)$
$\because {\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)$
Now, divide the whole equation by cos x,
$\therefore {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\cos x}}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{{\cos x}}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}}} \right)$
$\therefore {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)$
Since we can write 1 as tan $\dfrac{\pi }{4}$
$\therefore {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4}\tan x}}} \right)$
Now, applying property of $\left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right) = \tan \left( {A + B} \right)$
$\therefore {\tan ^{ - 1}}\left[ {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right]$
$\therefore \dfrac{\pi }{4} + x$
Note:
Some properties of $\tan \theta $ :
1) ${\tan ^2}\theta = {\sec ^2}\theta - 1$
2) $\tan \left( { - \theta } \right) = - \tan \theta $
3) $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
4) $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
5) $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

