
Simplify: $\sqrt{18}\times \sqrt{27}\times \sqrt{128}$.
Answer
605.7k+ views
Hint: To simplify the expression given in the question, we will first prime factorise the numbers given under square root. Then we will apply rules for multiplication of irrational numbers and multiply the simplified irrational numbers to get the result.
Complete step-by-step answer:
We first need to prime factorise 18, 27 and 128.
Prime factorisation of 18,
Hence,
$\begin{align}
& 18=2\times 3\times 3 \\
& \therefore \sqrt{18}=\sqrt{2\times 3\times 3} \\
& =3\sqrt{2} \\
\end{align}$
(As 3 occurs twice inside the root, so we take it one 3 outside the square root)
Prime factorisation of 27,
Hence,
$\begin{align}
& 27=3\times 3\times 3 \\
& \therefore \sqrt{27}=3\sqrt{3} \\
\end{align}$
Prime factorisation of 128,
Hence,
\[\begin{align}
& 128=2\times 2\times 2\times 2\times 2\times 2\times 2 \\
& \therefore \sqrt{128}=\sqrt{\underline{2\times 2}\times \underline{2\times 2}\times \underline{2\times 2}\times 2} \\
& =2\times 2\times 2\sqrt{2} \\
& =8\sqrt{2} \\
\end{align}\]
So, the expression $\sqrt{18}\times \sqrt{27}\times \sqrt{128}$ can be written as,
$\begin{align}
& \Rightarrow 3\sqrt{2}\times 3\sqrt{3}\times 8\sqrt{2} \\
& \Rightarrow \left( 3\sqrt{2}\times 8\sqrt{2} \right)\times 3\sqrt{3} \\
& \text{since, }\sqrt{2}\times \sqrt{2}=2 \\
& \text{Hence,} \\
& \left( 3\sqrt{2}\times 8\sqrt{2} \right)\times 3\sqrt{3}\Rightarrow \left( 3\times 8\times \sqrt{2}\times \sqrt{2} \right)\times 3\sqrt{3} \\
& =\left( 24\times 2 \right)\times 3\sqrt{3} \\
& =144\sqrt{3} \\
& \text{since,}\left( a\times b\sqrt{c}=ab\sqrt{c} \right) \\
\end{align}$
Therefore, $\sqrt{18}\times \sqrt{27}\times \sqrt{128}=144\sqrt{3}$.
Note: Students can also solve this question by first multiplying the numbers under the square root and then they can obtain the answer by prime factorisation the product obtained under the square root.
Method II:
$\begin{align}
& \sqrt{18}\times \sqrt{27}\times \sqrt{128} \\
& =\sqrt{18\times 27\times 128} \\
& =\sqrt{\left( 18 \right)\left( 27 \right)\left( 128 \right)} \\
& \left( \because \sqrt{a}\times \sqrt{b}\times \sqrt{c}=\sqrt{a\times b\times c}=\sqrt{abc} \right) \\
& \therefore \sqrt{18\times 27\times 128}=\sqrt{62208} \\
\end{align}$
Now, we will do prime factorisation of 62208,
Hence,
$\begin{align}
& 62208={{2}^{2}}\times {{2}^{2}}\times {{2}^{2}}\times {{2}^{2}}\times {{3}^{2}}\times {{3}^{2}}\times 3 \\
& \therefore \sqrt{62208}=2\times 2\times 2\times 2\times 3\times 3\times \sqrt{3} \\
& =144\sqrt{3} \\
\end{align}$
Therefore, $\sqrt{18}\times \sqrt{27}\times \sqrt{128}=144\sqrt{3}$.
Complete step-by-step answer:
We first need to prime factorise 18, 27 and 128.
Prime factorisation of 18,
Hence,
$\begin{align}
& 18=2\times 3\times 3 \\
& \therefore \sqrt{18}=\sqrt{2\times 3\times 3} \\
& =3\sqrt{2} \\
\end{align}$
(As 3 occurs twice inside the root, so we take it one 3 outside the square root)
Prime factorisation of 27,
Hence,
$\begin{align}
& 27=3\times 3\times 3 \\
& \therefore \sqrt{27}=3\sqrt{3} \\
\end{align}$
Prime factorisation of 128,
Hence,
\[\begin{align}
& 128=2\times 2\times 2\times 2\times 2\times 2\times 2 \\
& \therefore \sqrt{128}=\sqrt{\underline{2\times 2}\times \underline{2\times 2}\times \underline{2\times 2}\times 2} \\
& =2\times 2\times 2\sqrt{2} \\
& =8\sqrt{2} \\
\end{align}\]
So, the expression $\sqrt{18}\times \sqrt{27}\times \sqrt{128}$ can be written as,
$\begin{align}
& \Rightarrow 3\sqrt{2}\times 3\sqrt{3}\times 8\sqrt{2} \\
& \Rightarrow \left( 3\sqrt{2}\times 8\sqrt{2} \right)\times 3\sqrt{3} \\
& \text{since, }\sqrt{2}\times \sqrt{2}=2 \\
& \text{Hence,} \\
& \left( 3\sqrt{2}\times 8\sqrt{2} \right)\times 3\sqrt{3}\Rightarrow \left( 3\times 8\times \sqrt{2}\times \sqrt{2} \right)\times 3\sqrt{3} \\
& =\left( 24\times 2 \right)\times 3\sqrt{3} \\
& =144\sqrt{3} \\
& \text{since,}\left( a\times b\sqrt{c}=ab\sqrt{c} \right) \\
\end{align}$
Therefore, $\sqrt{18}\times \sqrt{27}\times \sqrt{128}=144\sqrt{3}$.
Note: Students can also solve this question by first multiplying the numbers under the square root and then they can obtain the answer by prime factorisation the product obtained under the square root.
Method II:
$\begin{align}
& \sqrt{18}\times \sqrt{27}\times \sqrt{128} \\
& =\sqrt{18\times 27\times 128} \\
& =\sqrt{\left( 18 \right)\left( 27 \right)\left( 128 \right)} \\
& \left( \because \sqrt{a}\times \sqrt{b}\times \sqrt{c}=\sqrt{a\times b\times c}=\sqrt{abc} \right) \\
& \therefore \sqrt{18\times 27\times 128}=\sqrt{62208} \\
\end{align}$
Now, we will do prime factorisation of 62208,
Hence,
$\begin{align}
& 62208={{2}^{2}}\times {{2}^{2}}\times {{2}^{2}}\times {{2}^{2}}\times {{3}^{2}}\times {{3}^{2}}\times 3 \\
& \therefore \sqrt{62208}=2\times 2\times 2\times 2\times 3\times 3\times \sqrt{3} \\
& =144\sqrt{3} \\
\end{align}$
Therefore, $\sqrt{18}\times \sqrt{27}\times \sqrt{128}=144\sqrt{3}$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Give me the opposite gender of Duck class 8 english CBSE

Full form of STD, ISD and PCO

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Application to your principal for the character ce class 8 english CBSE

What is the difference between rai and mustard see class 8 biology CBSE

