Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Simplify: $\sqrt{18}\times \sqrt{27}\times \sqrt{128}$.

Answer
VerifiedVerified
597.9k+ views
Hint: To simplify the expression given in the question, we will first prime factorise the numbers given under square root. Then we will apply rules for multiplication of irrational numbers and multiply the simplified irrational numbers to get the result.

Complete step-by-step answer:
We first need to prime factorise 18, 27 and 128.
Prime factorisation of 18,
seo images

Hence,
 $\begin{align}
  & 18=2\times 3\times 3 \\
 & \therefore \sqrt{18}=\sqrt{2\times 3\times 3} \\
 & =3\sqrt{2} \\
\end{align}$
(As 3 occurs twice inside the root, so we take it one 3 outside the square root)
Prime factorisation of 27,
seo images

Hence,
 $\begin{align}
  & 27=3\times 3\times 3 \\
 & \therefore \sqrt{27}=3\sqrt{3} \\
\end{align}$
Prime factorisation of 128,
seo images

Hence,
\[\begin{align}
  & 128=2\times 2\times 2\times 2\times 2\times 2\times 2 \\
 & \therefore \sqrt{128}=\sqrt{\underline{2\times 2}\times \underline{2\times 2}\times \underline{2\times 2}\times 2} \\
 & =2\times 2\times 2\sqrt{2} \\
 & =8\sqrt{2} \\
\end{align}\]
So, the expression $\sqrt{18}\times \sqrt{27}\times \sqrt{128}$ can be written as,
$\begin{align}
  & \Rightarrow 3\sqrt{2}\times 3\sqrt{3}\times 8\sqrt{2} \\
 & \Rightarrow \left( 3\sqrt{2}\times 8\sqrt{2} \right)\times 3\sqrt{3} \\
 & \text{since, }\sqrt{2}\times \sqrt{2}=2 \\
 & \text{Hence,} \\
 & \left( 3\sqrt{2}\times 8\sqrt{2} \right)\times 3\sqrt{3}\Rightarrow \left( 3\times 8\times \sqrt{2}\times \sqrt{2} \right)\times 3\sqrt{3} \\
 & =\left( 24\times 2 \right)\times 3\sqrt{3} \\
 & =144\sqrt{3} \\
 & \text{since,}\left( a\times b\sqrt{c}=ab\sqrt{c} \right) \\
\end{align}$
Therefore, $\sqrt{18}\times \sqrt{27}\times \sqrt{128}=144\sqrt{3}$.

Note: Students can also solve this question by first multiplying the numbers under the square root and then they can obtain the answer by prime factorisation the product obtained under the square root.
Method II:
$\begin{align}
  & \sqrt{18}\times \sqrt{27}\times \sqrt{128} \\
 & =\sqrt{18\times 27\times 128} \\
 & =\sqrt{\left( 18 \right)\left( 27 \right)\left( 128 \right)} \\
 & \left( \because \sqrt{a}\times \sqrt{b}\times \sqrt{c}=\sqrt{a\times b\times c}=\sqrt{abc} \right) \\
 & \therefore \sqrt{18\times 27\times 128}=\sqrt{62208} \\
\end{align}$
Now, we will do prime factorisation of 62208,
seo images

Hence,
$\begin{align}
  & 62208={{2}^{2}}\times {{2}^{2}}\times {{2}^{2}}\times {{2}^{2}}\times {{3}^{2}}\times {{3}^{2}}\times 3 \\
 & \therefore \sqrt{62208}=2\times 2\times 2\times 2\times 3\times 3\times \sqrt{3} \\
 & =144\sqrt{3} \\
\end{align}$
Therefore, $\sqrt{18}\times \sqrt{27}\times \sqrt{128}=144\sqrt{3}$.