
Simplify $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \theta $
Answer
548.7k+ views
Hint: The given problem can be solved by using the double angle formulae of sine and cosine. Use of double angle formulae help us to convert the $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \left( {2\theta } \right) $ and then to trigonometric functions of unit $ \theta $ . Double angle formulae for sine and cosine are: $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $ and \[\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right) = \left( {2{{\cos }^2}x - 1} \right)\]
Complete step-by-step answer:
For simplifying $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \theta $ , we first use double angle formulae of sine to convert $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \left( {2\theta } \right) $ .
Using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $ in the given problem, we get,
$ \sin \left( {4\theta } \right) $ $ = $ \[\sin \left\{ {2\left( {2\theta } \right)} \right\}\]
\[ = \] $ 2 $ $ \sin \left( {2\theta } \right) $ $ \cos \left( {2\theta } \right) $ $ $
Now, we have to convert trigonometric functions of unit $ \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ by using the double angle formulae.
Again using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right) $ $ \cos \left( {2\theta } \right) $
Now, we have to use a double angle formula for cosine to convert $ \cos \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ .
Using \[\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right)\] ,
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right)\left( {1 - 2{{\sin }^2}\theta } \right) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta - 4{{\sin }^3}\theta \cos \theta } \right) $
On simplifying further, we get,
\[ = \] $ 4\sin \theta \cos \theta - 8{\sin ^3}\theta \cos \theta $
Hence, $ \sin \left( {4\theta } \right) $ in terms of trigonometric functions of unit $ \theta $ is $ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $ .
So, the correct answer is “$ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $”.
Note: The above question can also be solved by using compound angle formulae instead of double angle formulae such as $ \sin (A + B) = \left( {\sin A\cos B + \cos A\sin B} \right) $ and $ \cos (A + B) = \left( {\cos A\cos B - \sin A\sin B} \right) $ . This method can also be used to get to the answer of the given problem.
Complete step-by-step answer:
For simplifying $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \theta $ , we first use double angle formulae of sine to convert $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \left( {2\theta } \right) $ .
Using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $ in the given problem, we get,
$ \sin \left( {4\theta } \right) $ $ = $ \[\sin \left\{ {2\left( {2\theta } \right)} \right\}\]
\[ = \] $ 2 $ $ \sin \left( {2\theta } \right) $ $ \cos \left( {2\theta } \right) $ $ $
Now, we have to convert trigonometric functions of unit $ \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ by using the double angle formulae.
Again using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right) $ $ \cos \left( {2\theta } \right) $
Now, we have to use a double angle formula for cosine to convert $ \cos \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ .
Using \[\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right)\] ,
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right)\left( {1 - 2{{\sin }^2}\theta } \right) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta - 4{{\sin }^3}\theta \cos \theta } \right) $
On simplifying further, we get,
\[ = \] $ 4\sin \theta \cos \theta - 8{\sin ^3}\theta \cos \theta $
Hence, $ \sin \left( {4\theta } \right) $ in terms of trigonometric functions of unit $ \theta $ is $ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $ .
So, the correct answer is “$ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $”.
Note: The above question can also be solved by using compound angle formulae instead of double angle formulae such as $ \sin (A + B) = \left( {\sin A\cos B + \cos A\sin B} \right) $ and $ \cos (A + B) = \left( {\cos A\cos B - \sin A\sin B} \right) $ . This method can also be used to get to the answer of the given problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

