
Simplify $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \theta $
Answer
562.8k+ views
Hint: The given problem can be solved by using the double angle formulae of sine and cosine. Use of double angle formulae help us to convert the $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \left( {2\theta } \right) $ and then to trigonometric functions of unit $ \theta $ . Double angle formulae for sine and cosine are: $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $ and \[\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right) = \left( {2{{\cos }^2}x - 1} \right)\]
Complete step-by-step answer:
For simplifying $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \theta $ , we first use double angle formulae of sine to convert $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \left( {2\theta } \right) $ .
Using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $ in the given problem, we get,
$ \sin \left( {4\theta } \right) $ $ = $ \[\sin \left\{ {2\left( {2\theta } \right)} \right\}\]
\[ = \] $ 2 $ $ \sin \left( {2\theta } \right) $ $ \cos \left( {2\theta } \right) $ $ $
Now, we have to convert trigonometric functions of unit $ \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ by using the double angle formulae.
Again using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right) $ $ \cos \left( {2\theta } \right) $
Now, we have to use a double angle formula for cosine to convert $ \cos \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ .
Using \[\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right)\] ,
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right)\left( {1 - 2{{\sin }^2}\theta } \right) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta - 4{{\sin }^3}\theta \cos \theta } \right) $
On simplifying further, we get,
\[ = \] $ 4\sin \theta \cos \theta - 8{\sin ^3}\theta \cos \theta $
Hence, $ \sin \left( {4\theta } \right) $ in terms of trigonometric functions of unit $ \theta $ is $ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $ .
So, the correct answer is “$ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $”.
Note: The above question can also be solved by using compound angle formulae instead of double angle formulae such as $ \sin (A + B) = \left( {\sin A\cos B + \cos A\sin B} \right) $ and $ \cos (A + B) = \left( {\cos A\cos B - \sin A\sin B} \right) $ . This method can also be used to get to the answer of the given problem.
Complete step-by-step answer:
For simplifying $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \theta $ , we first use double angle formulae of sine to convert $ \sin \left( {4\theta } \right) $ to trigonometric functions of unit $ \left( {2\theta } \right) $ .
Using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $ in the given problem, we get,
$ \sin \left( {4\theta } \right) $ $ = $ \[\sin \left\{ {2\left( {2\theta } \right)} \right\}\]
\[ = \] $ 2 $ $ \sin \left( {2\theta } \right) $ $ \cos \left( {2\theta } \right) $ $ $
Now, we have to convert trigonometric functions of unit $ \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ by using the double angle formulae.
Again using $ \sin \left( {2x} \right) = 2\sin (x)\cos (x) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right) $ $ \cos \left( {2\theta } \right) $
Now, we have to use a double angle formula for cosine to convert $ \cos \left( {2\theta } \right) $ into trigonometric functions of unit $ \theta $ .
Using \[\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right)\] ,
\[ = \] $ 2\left( {2\sin \theta \cos \theta } \right)\left( {1 - 2{{\sin }^2}\theta } \right) $
\[ = \] $ 2\left( {2\sin \theta \cos \theta - 4{{\sin }^3}\theta \cos \theta } \right) $
On simplifying further, we get,
\[ = \] $ 4\sin \theta \cos \theta - 8{\sin ^3}\theta \cos \theta $
Hence, $ \sin \left( {4\theta } \right) $ in terms of trigonometric functions of unit $ \theta $ is $ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $ .
So, the correct answer is “$ \left( {4\sin \theta \cos \theta - 8{{\sin }^3}\theta \cos \theta } \right) $”.
Note: The above question can also be solved by using compound angle formulae instead of double angle formulae such as $ \sin (A + B) = \left( {\sin A\cos B + \cos A\sin B} \right) $ and $ \cos (A + B) = \left( {\cos A\cos B - \sin A\sin B} \right) $ . This method can also be used to get to the answer of the given problem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

