
Simplify: $\left[ {\dfrac{{x + 2}}{{x - 2}} - \dfrac{{x - 2}}{{x + 2}} - \dfrac{{8x}}{{{x^2} - 16}}} \right] \div \dfrac{{8x}}{{{x^4} - 16}}$.
Answer
586.8k+ views
Hint:
We can simplify the dividend and divisor separately. To simplify the dividend, we can take the ${1}^{\text{st}}$ 2 terms and simplify it by finding the LCM and using the identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$. Then we can simplify the remaining terms by taking the LCM and doing further calculation. Then we can take the divisor and expand its denominator using the identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . Then we can write them as fractions and cancel out the common terms to get the simplified expression.
Complete step by step solution:
We can take the term inside the bracket,
Let,
We can take the LCM of the 1st 2 terms,
$ \Rightarrow A = \left[ {\dfrac{{{{\left( {x + 2} \right)}^2} - {{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . Using this we can simplify the numerator and denominator,
$ \Rightarrow A = \left[ {\dfrac{{\left( {x + 2 + x - 2} \right)\left( {x + 2 - x + 2} \right)}}{{{x^2} - {2^2}}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
On simplification, we get,
$ \Rightarrow A = \left[ {\dfrac{{\left( {2x} \right)\left( 4 \right)}}{{{x^2} - 4}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
$ \Rightarrow A = \left[ {\dfrac{{8x}}{{{x^2} - 4}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
We can take the term 8x outside the bracket.
$ \Rightarrow A = 8x\left[ {\dfrac{1}{{{x^2} - 4}} - \dfrac{1}{{{x^2} - 16}}} \right]$
Now we can take the LCM,
\[ \Rightarrow A = 8x\left[ {\dfrac{{{x^2} - 16 - \left( {{x^2} - 4} \right)}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]
On further simplification, we get,
\[ \Rightarrow A = 8x\left[ {\dfrac{{{x^2} - 16 - {x^2} + 4}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]
\[ \Rightarrow A = 8x\left[ {\dfrac{{ - 12}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]
Hence we have,
\[ \Rightarrow \left[ {\dfrac{{x + 2}}{{x - 2}} - \dfrac{{x - 2}}{{x + 2}} - \dfrac{{8x}}{{{x^2} - 16}}} \right] = 8x\left[ {\dfrac{{ - 12}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]… (1)
Now we can take the divisor,
$B = \dfrac{{8x}}{{{x^4} - 16}}$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . Using this we can simplify the denominator,
$ \Rightarrow B = \dfrac{{8x}}{{\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)}}$
Hence we have,
$ \Rightarrow \dfrac{{8x}}{{{x^4} - 16}} = \dfrac{{8x}}{{\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)}}$ … (2)
Now the expression,
$I = \left[ {\dfrac{{x + 2}}{{x - 2}} - \dfrac{{x - 2}}{{x + 2}} - \dfrac{{8x}}{{{x^2} - 16}}} \right] \div \dfrac{{8x}}{{{x^4} - 16}}$
On substituting (1) and (2), we get,
$ \Rightarrow I = \dfrac{{8x\dfrac{{ - 12}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}}}{{\dfrac{{8x}}{{\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)}}}}$
We can cancel all the common term, then we will get,
$ \Rightarrow I = \dfrac{{\dfrac{{ - 12}}{{\left( {{x^2} - 16} \right)}}}}{{\dfrac{1}{{\left( {{x^2} + 4} \right)}}}}$
On rearranging, we get,
$ \Rightarrow I = \dfrac{{ - 12\left( {{x^2} + 4} \right)}}{{\left( {{x^2} - 16} \right)}}$
Therefore, the required simplified expression is $\dfrac{{ - 12\left( {{x^2} + 4} \right)}}{{\left( {{x^2} - 16} \right)}}$
Note:
We used the concepts of algebra to solve the problem. The important identity we used is $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . While simplifying the numerator, we must take only 2 terms at a time. Otherwise it will become complicated and we may go wrong. We must take care of the power of x before cancelling. We must verify that the sign between the variable and constant is negative before it is factored.
We can simplify the dividend and divisor separately. To simplify the dividend, we can take the ${1}^{\text{st}}$ 2 terms and simplify it by finding the LCM and using the identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$. Then we can simplify the remaining terms by taking the LCM and doing further calculation. Then we can take the divisor and expand its denominator using the identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . Then we can write them as fractions and cancel out the common terms to get the simplified expression.
Complete step by step solution:
We can take the term inside the bracket,
Let,
We can take the LCM of the 1st 2 terms,
$ \Rightarrow A = \left[ {\dfrac{{{{\left( {x + 2} \right)}^2} - {{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . Using this we can simplify the numerator and denominator,
$ \Rightarrow A = \left[ {\dfrac{{\left( {x + 2 + x - 2} \right)\left( {x + 2 - x + 2} \right)}}{{{x^2} - {2^2}}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
On simplification, we get,
$ \Rightarrow A = \left[ {\dfrac{{\left( {2x} \right)\left( 4 \right)}}{{{x^2} - 4}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
$ \Rightarrow A = \left[ {\dfrac{{8x}}{{{x^2} - 4}} - \dfrac{{8x}}{{{x^2} - 16}}} \right]$
We can take the term 8x outside the bracket.
$ \Rightarrow A = 8x\left[ {\dfrac{1}{{{x^2} - 4}} - \dfrac{1}{{{x^2} - 16}}} \right]$
Now we can take the LCM,
\[ \Rightarrow A = 8x\left[ {\dfrac{{{x^2} - 16 - \left( {{x^2} - 4} \right)}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]
On further simplification, we get,
\[ \Rightarrow A = 8x\left[ {\dfrac{{{x^2} - 16 - {x^2} + 4}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]
\[ \Rightarrow A = 8x\left[ {\dfrac{{ - 12}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]
Hence we have,
\[ \Rightarrow \left[ {\dfrac{{x + 2}}{{x - 2}} - \dfrac{{x - 2}}{{x + 2}} - \dfrac{{8x}}{{{x^2} - 16}}} \right] = 8x\left[ {\dfrac{{ - 12}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}} \right]\]… (1)
Now we can take the divisor,
$B = \dfrac{{8x}}{{{x^4} - 16}}$
We know that, $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . Using this we can simplify the denominator,
$ \Rightarrow B = \dfrac{{8x}}{{\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)}}$
Hence we have,
$ \Rightarrow \dfrac{{8x}}{{{x^4} - 16}} = \dfrac{{8x}}{{\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)}}$ … (2)
Now the expression,
$I = \left[ {\dfrac{{x + 2}}{{x - 2}} - \dfrac{{x - 2}}{{x + 2}} - \dfrac{{8x}}{{{x^2} - 16}}} \right] \div \dfrac{{8x}}{{{x^4} - 16}}$
On substituting (1) and (2), we get,
$ \Rightarrow I = \dfrac{{8x\dfrac{{ - 12}}{{\left( {{x^2} - 4} \right)\left( {{x^2} - 16} \right)}}}}{{\dfrac{{8x}}{{\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)}}}}$
We can cancel all the common term, then we will get,
$ \Rightarrow I = \dfrac{{\dfrac{{ - 12}}{{\left( {{x^2} - 16} \right)}}}}{{\dfrac{1}{{\left( {{x^2} + 4} \right)}}}}$
On rearranging, we get,
$ \Rightarrow I = \dfrac{{ - 12\left( {{x^2} + 4} \right)}}{{\left( {{x^2} - 16} \right)}}$
Therefore, the required simplified expression is $\dfrac{{ - 12\left( {{x^2} + 4} \right)}}{{\left( {{x^2} - 16} \right)}}$
Note:
We used the concepts of algebra to solve the problem. The important identity we used is $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ . While simplifying the numerator, we must take only 2 terms at a time. Otherwise it will become complicated and we may go wrong. We must take care of the power of x before cancelling. We must verify that the sign between the variable and constant is negative before it is factored.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


