
How do you simplify $\left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)$ ?
Answer
559.8k+ views
Hint: In this question, we have been asked to simplify the given trigonometric equation. Start by converting the ratios into sin and cos. Then, find out the LCM of the denominators and make them equal. Simplify the equation that you have got now. You will see an identity being formed in the numerator. Put its value and cancel out the like terms. You will get your answer.
Formula used:
1) ${\cos ^2}x + {\sin ^2}x = 1$
2) $\dfrac{{\cos x}}{{\sin x}} = \cot x$
Complete step-by-step answer:
We are given a trigonometric expression. Let us see how to simplify it.
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)$ …. (given)
Simplifying the numerator by putting $\sec x = \dfrac{1}{{\cos x}}$,
$ \Rightarrow \left( {\dfrac{1}{{\sin x\cos x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)$
Now, we will take LCM of the denominator. LCM will come out to be $\sin x\cos x$.
Multiplying the second term by $\sin x$ to make the denominator the same.
$ \Rightarrow \left( {\dfrac{1}{{\sin x\cos x}}} \right) - \left( {\dfrac{{\sin x \times \sin x}}{{\cos x \times \sin x}}} \right)$
On simplifying, we will get,
$ \Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{\sin x\cos x}}$
We know that ${\cos ^2}x + {\sin ^2}x = 1$. On shifting, we will get, ${\cos ^2}x = 1 - {\sin ^2}x$. Substituting this in the above expression,
$ \Rightarrow \dfrac{{{{\cos }^2}x}}{{\sin x\cos x}}$
Cancelling out the like terms,
$ \Rightarrow \dfrac{{\cos x}}{{\sin x}}$
We know that $\dfrac{{\cos x}}{{\sin x}} = \cot x$.
Hence, $\left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right) = \cot x$
Note:
Let us solve the same question by another method.
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)$
We know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$. Putting this in the above expression,
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \tan x$
Now, in order to make the denominator, the same, we will multiply and divide the second term by $\sin x$.
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \dfrac{{\tan x \times \sin x}}{{\sin x}}$
On simplifying, we will get,
$ \Rightarrow \dfrac{{\sec x - \tan x \times \sin x}}{{\sin x}}$
Now, we know that $\sec x = \dfrac{1}{{\cos x}}$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. Putting them in the formula,
$ \Rightarrow \dfrac{{\dfrac{1}{{\cos x}} - \dfrac{{{{\sin }^2}x}}{{\cos x}}}}{{\sin x}}$
$ \Rightarrow \dfrac{{\dfrac{{1 - {{\sin }^2}x}}{{\cos x}}}}{{\sin x}}$
Now, the steps are the same from here. We know that ${\cos ^2}x + {\sin ^2}x = 1$. On shifting, we will get, ${\cos ^2}x = 1 - {\sin ^2}x$. Substituting this in the above expression,
$ \Rightarrow \dfrac{{\dfrac{{{{\cos }^2}x}}{{\cos x}}}}{{\sin x}}$
Cancelling out the like terms,
$ \Rightarrow \dfrac{{\dfrac{{\cos x}}{1}}}{{\sin x}}$
On simplifying, we will get, $\dfrac{{\cos x}}{{\sin x}} = \cot x$.
Hence, the answer from this method is similar to the answer from the method we used above. You can use any method from these two.
Formula used:
1) ${\cos ^2}x + {\sin ^2}x = 1$
2) $\dfrac{{\cos x}}{{\sin x}} = \cot x$
Complete step-by-step answer:
We are given a trigonometric expression. Let us see how to simplify it.
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)$ …. (given)
Simplifying the numerator by putting $\sec x = \dfrac{1}{{\cos x}}$,
$ \Rightarrow \left( {\dfrac{1}{{\sin x\cos x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)$
Now, we will take LCM of the denominator. LCM will come out to be $\sin x\cos x$.
Multiplying the second term by $\sin x$ to make the denominator the same.
$ \Rightarrow \left( {\dfrac{1}{{\sin x\cos x}}} \right) - \left( {\dfrac{{\sin x \times \sin x}}{{\cos x \times \sin x}}} \right)$
On simplifying, we will get,
$ \Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{\sin x\cos x}}$
We know that ${\cos ^2}x + {\sin ^2}x = 1$. On shifting, we will get, ${\cos ^2}x = 1 - {\sin ^2}x$. Substituting this in the above expression,
$ \Rightarrow \dfrac{{{{\cos }^2}x}}{{\sin x\cos x}}$
Cancelling out the like terms,
$ \Rightarrow \dfrac{{\cos x}}{{\sin x}}$
We know that $\dfrac{{\cos x}}{{\sin x}} = \cot x$.
Hence, $\left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right) = \cot x$
Note:
Let us solve the same question by another method.
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)$
We know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$. Putting this in the above expression,
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \tan x$
Now, in order to make the denominator, the same, we will multiply and divide the second term by $\sin x$.
$ \Rightarrow \left( {\dfrac{{\sec x}}{{\sin x}}} \right) - \dfrac{{\tan x \times \sin x}}{{\sin x}}$
On simplifying, we will get,
$ \Rightarrow \dfrac{{\sec x - \tan x \times \sin x}}{{\sin x}}$
Now, we know that $\sec x = \dfrac{1}{{\cos x}}$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. Putting them in the formula,
$ \Rightarrow \dfrac{{\dfrac{1}{{\cos x}} - \dfrac{{{{\sin }^2}x}}{{\cos x}}}}{{\sin x}}$
$ \Rightarrow \dfrac{{\dfrac{{1 - {{\sin }^2}x}}{{\cos x}}}}{{\sin x}}$
Now, the steps are the same from here. We know that ${\cos ^2}x + {\sin ^2}x = 1$. On shifting, we will get, ${\cos ^2}x = 1 - {\sin ^2}x$. Substituting this in the above expression,
$ \Rightarrow \dfrac{{\dfrac{{{{\cos }^2}x}}{{\cos x}}}}{{\sin x}}$
Cancelling out the like terms,
$ \Rightarrow \dfrac{{\dfrac{{\cos x}}{1}}}{{\sin x}}$
On simplifying, we will get, $\dfrac{{\cos x}}{{\sin x}} = \cot x$.
Hence, the answer from this method is similar to the answer from the method we used above. You can use any method from these two.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

