
How do you simplify $\left( \cot x+\csc x \right)\left( \cot x-\csc x \right)$?
Answer
558.9k+ views
Hint: In this problem we need to simplify the given equation i.e., we need to calculate the value of the given equation. In the given equation we can observe that the trigonometric functions $\cot $, $\csc $ are in addition and subtraction. So, we will first consider the term $\cot x+\csc x$ and we will simplify this term by using the basic trigonometric definitions we have. Now we will get the result in terms of $\sin x$, $\cos x$. Now we will follow the same procedure for simplifying the term $\cot x-\csc x$. Now we will multiply the both terms and use algebraic formulas and trigonometric identity to get the result.
Complete step by step answer:
Given that, $\left( \cot x+\csc x \right)\left( \cot x-\csc x \right)$.
Considering the term $\cot x+\csc x$ separately. Now we have $\cot x=\dfrac{\cos x}{\sin x}$, $\csc x=\dfrac{1}{\sin x}$. Substituting these values in the above term, then we will get
$\cot x+\csc x=\dfrac{\cos x}{\sin x}+\dfrac{1}{\sin x}$
Simplifying the above equation by taking LCM, then we will get
$\Rightarrow \cot x+\csc x=\dfrac{\cos x+1}{\sin x}$
Similarly, we will get the value of $\cot x-\csc x$ as
$\cot x-\csc x=\dfrac{\cos x-1}{\sin x}$
Now the value of $\left( \cot x+\csc x \right)\left( \cot x-\csc x \right)$ will be
$\left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=\left( \dfrac{\cos x+1}{\sin x} \right)\left( \dfrac{\cos x-1}{\sin x} \right)$
Using the algebraic formula $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, then we will get
$\Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=\dfrac{{{\cos }^{2}}x-1}{{{\sin }^{2}}x}$
From the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, the value of ${{\cos }^{2}}x-1=-{{\sin }^{2}}x$. Substituting this value in the above equation, then we will get
$\begin{align}
& \Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=\dfrac{-{{\sin }^{2}}x}{{{\sin }^{2}}x} \\
& \therefore \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=-1 \\
\end{align}$
Note: In the above problem we have used the algebraic formula $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ after converting each term into function of $\sin x$, $\cos x$. We can also use the same formula without converting each term, then we will get
$\Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)={{\cot }^{2}}x-{{\csc }^{2}}x$
We have the trigonometric identity ${{\csc }^{2}}x-{{\cot }^{2}}x=1$. From this identity we can write
$\Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=-1$
From both the methods we got the same result.
Complete step by step answer:
Given that, $\left( \cot x+\csc x \right)\left( \cot x-\csc x \right)$.
Considering the term $\cot x+\csc x$ separately. Now we have $\cot x=\dfrac{\cos x}{\sin x}$, $\csc x=\dfrac{1}{\sin x}$. Substituting these values in the above term, then we will get
$\cot x+\csc x=\dfrac{\cos x}{\sin x}+\dfrac{1}{\sin x}$
Simplifying the above equation by taking LCM, then we will get
$\Rightarrow \cot x+\csc x=\dfrac{\cos x+1}{\sin x}$
Similarly, we will get the value of $\cot x-\csc x$ as
$\cot x-\csc x=\dfrac{\cos x-1}{\sin x}$
Now the value of $\left( \cot x+\csc x \right)\left( \cot x-\csc x \right)$ will be
$\left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=\left( \dfrac{\cos x+1}{\sin x} \right)\left( \dfrac{\cos x-1}{\sin x} \right)$
Using the algebraic formula $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, then we will get
$\Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=\dfrac{{{\cos }^{2}}x-1}{{{\sin }^{2}}x}$
From the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, the value of ${{\cos }^{2}}x-1=-{{\sin }^{2}}x$. Substituting this value in the above equation, then we will get
$\begin{align}
& \Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=\dfrac{-{{\sin }^{2}}x}{{{\sin }^{2}}x} \\
& \therefore \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=-1 \\
\end{align}$
Note: In the above problem we have used the algebraic formula $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ after converting each term into function of $\sin x$, $\cos x$. We can also use the same formula without converting each term, then we will get
$\Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)={{\cot }^{2}}x-{{\csc }^{2}}x$
We have the trigonometric identity ${{\csc }^{2}}x-{{\cot }^{2}}x=1$. From this identity we can write
$\Rightarrow \left( \cot x+\csc x \right)\left( \cot x-\csc x \right)=-1$
From both the methods we got the same result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

