
How do you simplify $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ ?
Answer
550.2k+ views
Hint: We know that $\dfrac{a+b}{c}$ is equal to $\dfrac{a}{c}+\dfrac{b}{c}$ , c is a non- zero number , we can use it to write $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ as $\dfrac{\sqrt{5{{k}^{4}}}}{\sqrt{3{{k}^{3}}}}+\dfrac{3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ . we know that $\dfrac{\sqrt{a}}{\sqrt{b}}$ is equal to $\sqrt{\dfrac{a}{b}}$ so we can write $\dfrac{\sqrt{5{{k}^{4}}}}{\sqrt{3{{k}^{3}}}}$ as $\sqrt{\dfrac{5{{k}^{4}}}{3{{k}^{3}}}}$ and other one also. Then we can apply the exponential formula $\dfrac{{{x}^{n}}}{{{x}^{m}}}$ is equal to ${{x}^{n-m}}$, x is not 0.
Complete step by step answer:
The given equation is $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$
We can write $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ = $\dfrac{\sqrt{5{{k}^{4}}}}{\sqrt{3{{k}^{3}}}}+\dfrac{3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ .
we know that $\dfrac{\sqrt{a}}{\sqrt{b}}$ is equal to $\sqrt{\dfrac{a}{b}}$ , where b is not 0.
$\Rightarrow $ $\dfrac{\sqrt{5{{k}^{4}}}}{\sqrt{3{{k}^{3}}}}$ = $\sqrt{\dfrac{5{{k}^{4}}}{3{{k}^{3}}}}$ and
$\Rightarrow $ $\dfrac{3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ = $3\sqrt{\dfrac{2k}{3{{k}^{3}}}}$
$\Rightarrow $ $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ = $\sqrt{\dfrac{5{{k}^{4}}}{3{{k}^{3}}}}$ + $3\sqrt{\dfrac{2k}{3{{k}^{3}}}}$
Now we can apply the formula $\dfrac{{{x}^{n}}}{{{x}^{m}}}$ is equal to ${{x}^{n-m}}$, where x is not equal to 0.
We can say $\sqrt{\dfrac{5{{k}^{4}}}{3{{k}^{3}}}}$ + $3\sqrt{\dfrac{2k}{3{{k}^{3}}}}$ is equal to $\sqrt{\dfrac{5}{3}k}$ + $\dfrac{3}{k}\sqrt{\dfrac{2}{3}}$
Further solving we get
$\Rightarrow $ $\sqrt{\dfrac{5}{3}k}$ + $\dfrac{3}{k}\sqrt{\dfrac{2}{3}}$ = $\sqrt{\dfrac{5}{3}k}+\dfrac{\sqrt{6}}{k}$
So $\sqrt{\dfrac{5}{3}k}+\dfrac{\sqrt{6}}{k}$ is the simplified form of $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$
Note:
Square root of any number x means square root of x. so $\sqrt{3{{k}^{3}}}$ is equal to $\sqrt{3}{{\left( x \right)}^{\dfrac{3}{2}}}$ and $\sqrt{5{{x}^{4}}}$ equal to $\sqrt{5}{{x}^{2}}$ so we can write these value and can apply the formula $\dfrac{{{x}^{n}}}{{{x}^{m}}}$ is equal to ${{x}^{n-m}}$, where x is not equal to 0, we can get the answer. Whenever there is a term like $a\sqrt{b}$ , and we want to write the whole thing under square root , we have square a and then multiply it with b. so it will be $a\sqrt{b}$ = $\sqrt{{{a}^{2}}b}$ , for example $3\sqrt{2}$ = $\sqrt{18}$ . In the above question, we can solve it for k is equal to 0, in that case the value will be in the form of $\dfrac{0}{0}$ which is not valid.
Complete step by step answer:
The given equation is $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$
We can write $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ = $\dfrac{\sqrt{5{{k}^{4}}}}{\sqrt{3{{k}^{3}}}}+\dfrac{3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ .
we know that $\dfrac{\sqrt{a}}{\sqrt{b}}$ is equal to $\sqrt{\dfrac{a}{b}}$ , where b is not 0.
$\Rightarrow $ $\dfrac{\sqrt{5{{k}^{4}}}}{\sqrt{3{{k}^{3}}}}$ = $\sqrt{\dfrac{5{{k}^{4}}}{3{{k}^{3}}}}$ and
$\Rightarrow $ $\dfrac{3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ = $3\sqrt{\dfrac{2k}{3{{k}^{3}}}}$
$\Rightarrow $ $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$ = $\sqrt{\dfrac{5{{k}^{4}}}{3{{k}^{3}}}}$ + $3\sqrt{\dfrac{2k}{3{{k}^{3}}}}$
Now we can apply the formula $\dfrac{{{x}^{n}}}{{{x}^{m}}}$ is equal to ${{x}^{n-m}}$, where x is not equal to 0.
We can say $\sqrt{\dfrac{5{{k}^{4}}}{3{{k}^{3}}}}$ + $3\sqrt{\dfrac{2k}{3{{k}^{3}}}}$ is equal to $\sqrt{\dfrac{5}{3}k}$ + $\dfrac{3}{k}\sqrt{\dfrac{2}{3}}$
Further solving we get
$\Rightarrow $ $\sqrt{\dfrac{5}{3}k}$ + $\dfrac{3}{k}\sqrt{\dfrac{2}{3}}$ = $\sqrt{\dfrac{5}{3}k}+\dfrac{\sqrt{6}}{k}$
So $\sqrt{\dfrac{5}{3}k}+\dfrac{\sqrt{6}}{k}$ is the simplified form of $\dfrac{\sqrt{5{{k}^{4}}}+3\sqrt{2k}}{\sqrt{3{{k}^{3}}}}$
Note:
Square root of any number x means square root of x. so $\sqrt{3{{k}^{3}}}$ is equal to $\sqrt{3}{{\left( x \right)}^{\dfrac{3}{2}}}$ and $\sqrt{5{{x}^{4}}}$ equal to $\sqrt{5}{{x}^{2}}$ so we can write these value and can apply the formula $\dfrac{{{x}^{n}}}{{{x}^{m}}}$ is equal to ${{x}^{n-m}}$, where x is not equal to 0, we can get the answer. Whenever there is a term like $a\sqrt{b}$ , and we want to write the whole thing under square root , we have square a and then multiply it with b. so it will be $a\sqrt{b}$ = $\sqrt{{{a}^{2}}b}$ , for example $3\sqrt{2}$ = $\sqrt{18}$ . In the above question, we can solve it for k is equal to 0, in that case the value will be in the form of $\dfrac{0}{0}$ which is not valid.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

