
How do you simplify $\dfrac{\sec x-\cos x}{\tan x}$ ?
Answer
560.4k+ views
Hint: We separate the terms in the numerator to make two separate fractions. We convert the secant trigonometric function $\sec x$ in the numerator of the first term into tangent and sine to cancel out the tangent. We convert the tangent trigonometric function $\tan x$ into sine and cosine using $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, We simplify and use Pythagorean trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ .
Complete step by step solution:
We know that we convert tangent trigonometric function into sin and cosine using the following formula
\[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]
We are given in the following trigonometric expression to simplify
\[\dfrac{\sec x-\cos x}{\tan x}\]
Let us separate the two terms of the numerator into two separate fractions. We have;
\[\Rightarrow \dfrac{\sec x}{\tan x}-\dfrac{\cos x}{\sin x}\]
We know that cosine and secant trigonometric functions are reciprocal of each other which means $\sec x=\dfrac{1}{\cos x}$. We multiply $\sin x$ in the numerator and denominator to have $\sec x=\dfrac{\sin x}{\cos x\cdot \sin x}=\dfrac{\dfrac{\sin x}{\cos x}}{\cos x}=\dfrac{\tan x}{\cos x}$. We use this expression in the above step to have;
\[\Rightarrow \dfrac{\dfrac{\tan x}{\sin x}}{\tan x}-\dfrac{\cos x}{\tan x}\]
We cancel out $\tan x$ in the numerator and denominator in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{\dfrac{\tan x}{\sin x}}{\tan x}-\dfrac{\cos x}{\tan x} \\
& \Rightarrow \dfrac{1}{\sin x}-\dfrac{\cos x}{\tan x} \\
\end{align}\]
We convert the tangent function in the second term to sine and cosine to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\sin x}-\dfrac{\cos x}{\dfrac{\sin x}{\cos x}} \\
& \Rightarrow \dfrac{1}{\sin x}-\dfrac{{{\cos }^{2}}x}{\sin x} \\
& \Rightarrow \dfrac{1-{{\cos }^{2}}x}{\sin x} \\
\end{align}\]
We use Pythagorean trigonometric identity of sine and cosine ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ in the above step for $\theta =x$to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\sin }^{2}}x}{\sin x} \\
& \Rightarrow \dfrac{\sin x\cdot \sin x}{\sin x} \\
& =\sin x \\
\end{align}\]
The above expression is the required simplified expression .\[\]
Note: We can alternatively solve by directly converting the secant and tangent into sine and cosine as
\[\begin{align}
& \dfrac{\sec x-\cos x}{\tan x}\Rightarrow \dfrac{\dfrac{1}{\cos x}-\cos x}{\dfrac{\sin x}{\cos x}} \\
& \Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\dfrac{\dfrac{1-{{\cos }^{2}}x}{\cos x}}{\dfrac{\sin x}{\cos x}} \\
\end{align}\]
We cancel out $\cos x$ in the above expression step to have
\[\Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\dfrac{1-{{\cos }^{2}}x}{\sin x}\]
We use Pythagorean trigonometric identity of sine and cosine ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ in the above step for $\theta =x$to have;
\[\begin{align}
& \Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\dfrac{{{\sin }^{2}}x}{\sin x} \\
& \Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\sin x \\
\end{align}\]
We note that here $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ since $\tan x,\sec x$ are not defined for right angle or any odd multiples of right angle.
Complete step by step solution:
We know that we convert tangent trigonometric function into sin and cosine using the following formula
\[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]
We are given in the following trigonometric expression to simplify
\[\dfrac{\sec x-\cos x}{\tan x}\]
Let us separate the two terms of the numerator into two separate fractions. We have;
\[\Rightarrow \dfrac{\sec x}{\tan x}-\dfrac{\cos x}{\sin x}\]
We know that cosine and secant trigonometric functions are reciprocal of each other which means $\sec x=\dfrac{1}{\cos x}$. We multiply $\sin x$ in the numerator and denominator to have $\sec x=\dfrac{\sin x}{\cos x\cdot \sin x}=\dfrac{\dfrac{\sin x}{\cos x}}{\cos x}=\dfrac{\tan x}{\cos x}$. We use this expression in the above step to have;
\[\Rightarrow \dfrac{\dfrac{\tan x}{\sin x}}{\tan x}-\dfrac{\cos x}{\tan x}\]
We cancel out $\tan x$ in the numerator and denominator in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{\dfrac{\tan x}{\sin x}}{\tan x}-\dfrac{\cos x}{\tan x} \\
& \Rightarrow \dfrac{1}{\sin x}-\dfrac{\cos x}{\tan x} \\
\end{align}\]
We convert the tangent function in the second term to sine and cosine to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\sin x}-\dfrac{\cos x}{\dfrac{\sin x}{\cos x}} \\
& \Rightarrow \dfrac{1}{\sin x}-\dfrac{{{\cos }^{2}}x}{\sin x} \\
& \Rightarrow \dfrac{1-{{\cos }^{2}}x}{\sin x} \\
\end{align}\]
We use Pythagorean trigonometric identity of sine and cosine ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ in the above step for $\theta =x$to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\sin }^{2}}x}{\sin x} \\
& \Rightarrow \dfrac{\sin x\cdot \sin x}{\sin x} \\
& =\sin x \\
\end{align}\]
The above expression is the required simplified expression .\[\]
Note: We can alternatively solve by directly converting the secant and tangent into sine and cosine as
\[\begin{align}
& \dfrac{\sec x-\cos x}{\tan x}\Rightarrow \dfrac{\dfrac{1}{\cos x}-\cos x}{\dfrac{\sin x}{\cos x}} \\
& \Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\dfrac{\dfrac{1-{{\cos }^{2}}x}{\cos x}}{\dfrac{\sin x}{\cos x}} \\
\end{align}\]
We cancel out $\cos x$ in the above expression step to have
\[\Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\dfrac{1-{{\cos }^{2}}x}{\sin x}\]
We use Pythagorean trigonometric identity of sine and cosine ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ in the above step for $\theta =x$to have;
\[\begin{align}
& \Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\dfrac{{{\sin }^{2}}x}{\sin x} \\
& \Rightarrow \dfrac{\sec x-\cos x}{\tan x}=\sin x \\
\end{align}\]
We note that here $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ since $\tan x,\sec x$ are not defined for right angle or any odd multiples of right angle.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

